Multiphase flow is a very common phenomenon in oil wells. Several correlation models, either analytical or experimental, have been investigated by various studies to investigate this phenomenon. However, no single correlation model was found to produce good results in all flow conditions. 14 models available on the Prosper software were selected for the purpose of calculating the pressure gradient inside wells within a range of different flow conditions. The pressure gradient was calculated using Prosper software, then compared with the measured gradient based on the production log test (PLT) data. This study was conducted on 31 wells from five different oil fields (Kirkuk, Jambur, Bai-Hassan, Al-Ahdab, and Rumaila). It is worth noting that these wells have not been studied previously. The results indicated that the best correlation models were the Original Duns and Rose (DRO), Petroleum Experts 2 (PE2), and Hagedorn and Brown (HB), which outperformed the models of Hydro-3p and Mukherjee and Brill. The calculations also showed that the overall performance of all correlations is generally better in two-phase flow wells. Despite this, Fancher and Brown (FB), Hydro-3p, HB, and Orkiszewski (OR) models demonstrated an improved performance in three-phase flow wells as compared to the other correlation models.
The construction project is a very complicated work by its nature and requires specialized knowledge to lead it to success. The construction project is complicated socially, technically and economically in its planning, management and implementation aspects due to the fact that it has many variables and multiple stakeholders in addition to being affected by the surrounding environment. Successful projects depend on three fundamental points which are cost-time, performance and specifications. The project stakeholder's objective to achieve best specifications and the cost-time frame stipulated in the contract.
The question is, was the optimum implementation accomplished? The provision for the success of the project
... Show MoreAmara oil field is located at south eastern Iraq in Missan governorate. The Mishrif Formation in Amara field is one of the most important reservoirs in southern Iraq. Identifying and characterizing petrophysical flow units are the key to understanding and improving reservoir description, exploitation, production and predicting the performance of carbonate reservoirs to represent them as combinations of different flow units, each with uniform pore throat size distribution and similar performance. Mishrif Formation in Amara oil field was divided into seven reservoir units (MA.MB11,MB12,MB13,MB21,MC1, and MC2) separated between them barrier beds. The present work is a reservoir flow unit identification for (MA) and (MB11) reservoir units of
... Show MoreThe main objective of this study is to experimentally investigate the effect of the CMC polymeric drag reducer on the pressure drop occurred along the annulus of the wellbore in drilling operation and investigate the optimum polymer concentration that give the minimum pressure drop. A flow loop was designed for this purpose consist from 14 m long with transparent test section and differential pressure transmitter that allows to sense and measure the pressure losses along the test section. The results from the experimental work show that increasing in polymer concentration help to reduce the pressure drop in annulus and the optimum polymer concentration with the maximum drag reducing is 0.8 kg/m3. Also increasing in flow rate a
... Show MoreMost of the world's drilling companies use API method for calculating the
pressure drop in drilling oil and gas wells. Iraqi Drilling Company also uses this
method for drilling oil wells in all fields of Iraq. In Russia, the method is actively
used Grodde for calculating the pressure drop in drilling oil and gas wells. This
study includes a comparison of formulas API, Grodde and new techniques
developed methods for the laminar flow of viscoplastic fluids in the annular space.
The aim of this study is to determine the most accurate way to calculate the pressure
loss in drilling oil wells. The comparison was focused on identifying changes in the
values of β, using the above calculation methods.
Background: Obesity is an evolving major health problem in both developed and developing countries. Non-hypertensive obese may have an elevated Morning Blood pressure surge (MBPS), which is associated with increased risk for cardiac events (CE) independently of office and ambulatory blood pressure (BP). Non-hypertensive obese also may have a blunted nocturnal decrease in BP during the night, while healthy normotensive non-obese individuals have a 10%–20% nocturnal decrease in blood pressure (BP) during the night or dipping. Thus, 24-hour ambulatory blood pressure monitor (ABPM) is the gold standard to evaluate MBPS and dipping profile in non-hypertensive obese individuals.
Objectives: 
... Show MorePredicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods
... Show MoreThe analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show More