The aim of this paper is to investigate the theoretical approach for solvability of impulsive abstract Cauchy problem for impulsive nonlinear fractional order partial differential equations with nonlocal conditions, where the nonlinear extensible beam equation is a particular application case of this problem.
The necessary optimality conditions with Lagrange multipliers are studied and derived for a new class that includes the system of Caputo–Katugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left Caputo–Katugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time and the final state are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.
... Show MoreIn this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
In this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.
The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained. The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.
In this paper the effect of engagement length, number of teeth, amount of applied load, wave propagation time, number of cycles, and initial crack length on the principal stress distribution, velocity of crack propagation, and cyclic crack growth rate in a spline coupling subjected to cyclic torsional impact have been investigated analytically and experimentally. It was found that the stresses induced due to cyclic impact loading are higher than the stresses induced due to impact loading with high percentage depends on the number of cycles and total loading time. Also increasing the engagement length and the number of teeth reduces the principal stresses (40%) and
(25%) respectively for increasing the engagement length from (0.15 to 0
In this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreIn this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreThe first aim of the present study was performed to assay the activity of arginase in sera of women with uterine fibroid.. This study consisted of(50) women with uterine fibroid as patient's group and (30) healthy women as control group. The age ranged between (30-55) years for the two groups. The results showed that highly significant increas (P< 0.0001) in the arginase activity in sera of women with uterine fibroid (7.99± 0.23) I.U/L is found when compared with healthy group (0.52±0.02) I.U/L. The second aim was performed to isolate arginase from sera of women with uterine fibroids. The purification is done by addition of ammonium sulfate, dialysis, gel filtration chromatography by using sephadex G-50 and ion exchange chromatography by
... Show MoreThe first aim of the present study was performed to assay the activity of arginase in sera of women with uterine fibroid.. This study consisted of(50) women with uterine fibroid as patient's group and (30) healthy women as control group. The age ranged between (30-55) years for the two groups. The results showed that highly significant increase (P< 0.0001) in the arginase activity in sera of women with uterine fibroid (7.99± 0.23) I.U/L is found when compared with healthy group (0.52±0.02) I.U/L. The second aim was performed to isolate arginase from sera of women with uterine fibroids. The purification is done by addition of ammonium sulfate, dialysis, gel filtration chromatography by using sephadex G-50 and ion exchange chromatography
... Show More