Edge computing is proved to be an effective solution for the Internet of Things (IoT)-based systems. Bringing the resources closer to the end devices has improved the performance of the networks and reduced the load on the cloud. On the other hand, edge computing has some constraints related to the amount of the resources available on the edge servers, which is considered to be limited as compared with the cloud. In this paper, we propose Software-Defined Networking (SDN)-based resources allocation and service placement system in the multi-edge networks that serve multiple IoT applications. In this system, the resources of the edge servers are monitored using the proposed Edge Server Application (ESA) to determine the state of the edge server and, therefore, the acceptable services by each server. Benefiting from the information gathered by ESA, the service offloading decision would be taken by the proposed SDN Non-core Application (SNA) in a way that ensures an efficient load distribution and better resources utilization for the edge servers. A Weighted Aggregated Sum Product Assessment Method (WASPAS) was used to determine the best edge server. The proposed system was compared with a non-SDN system and showed improvement in the performance and the utilization of resources of the edge servers. Furthermore, the request handling time was considerably reduced and settled in constant rates for a different number of devices.
A nonlinear filter for smoothing color and gray images
corrupted by Gaussian noise is presented in this paper. The proposed
filter designed to reduce the noise in the R,G, and B bands of the
color images and preserving the edges. This filter applied in order to
prepare images for further processing such as edge detection and
image segmentation.
The results of computer simulations show that the proposed
filter gave satisfactory results when compared with the results of
conventional filters such as Gaussian low pass filter and median filter
by using Cross Correlation Coefficient (ccc) criteria.
Online service is used to be as Pay-Per-Use in Cloud computing. Service user need not be in a long time contract with cloud service providers. Service level agreements (SLAs) are understandings marked between a cloud service providers and others, for example, a service user, intermediary operator, or observing operators. Since cloud computing is an ongoing technology giving numerous services to basic business applications and adaptable systems to manage online agreements are significant. SLA maintains the quality-of-service to the cloud user. If service provider fails to maintain the required service SLA is considered to be SLA violated. The main aim is to minimize the SLA violations for maintain the QoS of their cloud users. In this res
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreHueckel edge detector study using binary step edge image is presented. The standard algorithm that Hueckel presented, in his paper without any alteration is adopted. This paper studies a fully analysis for the algorithm efficiency, time consuming and the expected results with slide window size and edge direction. An analysis for its behavior with the changing of the slide window size (disk size) is presented. The best result is acquired when the window size equals to four pixel.
A new approach presented in this study to determine the optimal edge detection threshold value. This approach is base on extracting small homogenous blocks from unequal mean targets. Then, from these blocks we generate small image with known edges (edges represent the lines between the contacted blocks). So, these simulated edges can be assumed as true edges .The true simulated edges, compared with the detected edges in the small generated image is done by using different thresholding values. The comparison based on computing mean square errors between the simulated edge image and the produced edge image from edge detector methods. The mean square error computed for the total edge image (Er), for edge regio
... Show MoreThis paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.