A geochemical and environmental study was carried out for the sediments of the Southern Neo-Tethys Ocean, represented by the Yamama Formation (Berriasian-Valaganian) in southern Iraq. The formation has a particular reservoir importance. The typical WQ-220 and WQ-280 wells were selected from the West Qurna field. Data of Gamma-ray logs were used for 30 depths of the typical well. Ten core samples were analyzed by X-Ray Fluoresces and total organic matter from both wells. The results showed that shaliness was relatively low, with an average of 16.5%, leading to a decrease in the presence of clay minerals and trace elements because the environment of the Yamama Formation is relatively far away from the coast. Qualitative evaluation of clay minerals was carried out by thorium/potassium ratio, which showed the dominance of illite and smectite. This may be due to an increase in the salinity of the ocean at that time or because potassium bonds are strong enough to resist the diagenesis processes. The origin of shale in the Yamama Formation was studied using the relationship TiO2-MgO+Fe2O3; the sources were passive margin group, oceanic island arc and active continental margin. The redox potential of paleoenvironment was determined by the thorium/uranium ratio, which showed that the beginning of depositional environment was slightly oxidized, but with the increase of sedimentation, it turned into a reduced environment, which indicates a transgression phase of sea level. The results of euxinic affinity, based on the relationship between molybdenum and Total Organic Carbon (TOC), reflect dyoxic facies which is deposited in extremely low but non-zero oxygen content, while the upper was approaching anoxic facies zone. The paleoenvironment of the Yamama Formation was of restricted deep marine water (outer shelf - upper part of the benthic zone) which contained a marine transgression phase because of the opening of Southern Neo-Tethys Ocean in the Valanginian age.
The Yamama Formation includes important carbonates reservoir that belongs to the Lower Cretaceous sequence in Southern Iraq. This study covers two oil fields (Sindbad and Siba) that are distributed Southeastern Basrah Governorate, South of Iraq. Yamama reservoir units were determined based on the study of cores, well logs, and petrographic examination of thin sections that required a detailed integration of geological data and petrophysical properties. These parameters were integrated in order to divide the Yamama Formation into six reservoir units (YA0, YA1, YA2, YB1, YB2 and YC), located between five cap rock units. The best facies association and petrophysical properties were found in the shoal environment, wh
... Show MoreThis paper contains studying of the Evaluation for the Petrophysical Properties of
Yamama Formation in Ratawi Field which occurs in about 70 km to the west of
Basrah city in Mesopotamia zone (Zubair subzone). The study includes a
petrophysical evaluation and (3 Dimensions) geological model for each unit
especially the three hydrocarbon units comprising the Yamama Formation in (5)
boreholes which are Rt-3, Rt-4, Rt-5, Rt-6 and Rt-7 distributed on the crest and
flanks of the Ratawi structure that are carried out in the present study. The
formation's boundaries were determined using well logs, available core intervals and
by Petrophysical data and it is found that it can be subdivided into three main
reservoir uni
The Yamama Formation represents a part of the Late Berriasian-Aptian sequence, deposited during the Early Cretaceous period within the main shallow marine depositional environment. The studied area covers three oil fields; Sindbad oil field, Halfaya and Ad'daimah oil field, located in southeastern Iraq. Six major microfacies were recognized in the succession of the studied area represented by the Yamama Formation to determine and recognize depositional paleoenvironments. These microfacies are; Peloidal Packstone, Algal Wackestone to Packstone, Bioclastic Wackestone – Packstone, Foraminiferal Bioclastic Wackstone, Packstone, Peloidal – Oolitic Grainstone and Mudstone Microfacies. These microfacies are classified int
... Show MoreThe major objective of this paper is to recognize the flow units of Yamama Formation in the west Qurna oil field, south of Iraq. To attain this objective, four wells namely, WQ-23, WQ-148, WQ-60, and WQ-203 are selected and analyzed. The two techniques hat proposed by some scientists to identify flow units are tested and verified. Results are also enhanced using well logs interpretation and the flow areas are proposed through the studying of the behavior of different well logs. Results of applying the two proposed techniques identify six flow reservoir units for the wells WQ-23, WQ-148, WQ-60, and WQ-203, respectively. This study also shows that the flow reservoir properties in the Yamama Formation improved towards the northeast of the W
... Show MoreEmerge application was used in Hampsson-Russell programs and that uses a combination of multiple 3D or 2D seismic attributes to predict some reservoir parameter of interest. In this research used the seismic inversion technique was performed on post-stack three dimensions (3D) seismic data in Nasriya oilfield with five wells and then used this results in Emerge analysis (training and application) were used to estimate reservoir properties (effective porosity) with multiattribute analysis derive relations between them at well locations. The horizon time slice of reservoir units of (Yb1, Yb3 and Yc) of Yamama Formation was made for property (effective porosity) to confirm match results and enhancement trends within these
... Show MoreThe study is an attempt to predict reservoir characterization by improving the estimation of petro-physical properties (porosity), through integration of wells information and 3D seismic data in early cretaceous carbonate reservoir Yamama Formation of (Abu-Amoud) field in southern part of Iraq. Seismic inversion (MBI) was used on post- stack 3 dimensions seismic data to estimate the values of P-acoustic impedance of which the distribution of porosity values was estimated through Yamama Formation in the study area. EMERGE module on the Hampson Russel software was applied to create a relationship between inverted seismic data and well data at well location to construct a perception about the distribution of porosity on the level of all uni
... Show MoreIt is evident from this study that Yamama Formation is reservoir rocks and source rocks at the same time, based on occurrences of crude oil and source rocks. Bulk properties of Yamama oil in six wells as well as comparing several samples of Yamama oil by using the biological mark have indicated multi source of hydrocarbons with some pay having Jurassic and Lower Cretaceouse source affinity that belongs to the Yamama Formation.
The petrophysical analysis is very important to understand the factors controlling the reservoir quality and production wells. In the current study, the petrophysical evaluation was accomplished to hydrocarbon assessment based on well log data of four wells of Early Cretaceous carbonate reservoir Yamama Formation in Abu-Amood oil field in the southern part of Iraq. The available well logs such as sonic, density, neutron, gamma ray, SP, and resistivity logs for wells AAm-1, AAm-2, AAm-3, and AAm-5 were used to delineate the reservoir characteristics of the Yamama Formation. Lithologic and mineralogic studies were performed using porosity logs combination cross plots such as density vs. neutron cross plot and M-N mineralogy plot. Thes
... Show MorePermeability is one of the essential petrophysical properties of rocks, reflecting the rock's ability to pass fluids. It is considered the basis for building any model to predict well deliverability. Yamama formation carbonate rocks are distinguished by sedimentary cycles that separate formation into reservoir units and insulating layers, a very complex porous system caused by secondary porosity due to substitute and dissolution processes. Those factors create permeability variables and vary significantly. Three ways used for permeability calculation, the firstly was the classical method, which only related the permeability to the porosity, resulting in a weak relationship. Secondly, the flow zone indicator (FZI) was divided reservoir into
... Show MoreTwenty nine core samples were taken from Ratawi 7 Oil well according to the presence of oil in formation and availability of core samples. This well is located in the province of Basra/southern Iraq. The samples were collected from Yamama Formation. The core samples are taken from the well at different depths, ranging between (3663m-3676m). The range of Vp for these core samples is (668-4017 m/sec) and its average is (1779 m/sec), While the range of Vs is (291-1854 m/sec) and its average is (796 m/sec). In the current study the ultrasonic method is conducted to measure Vp, Vs as well as some petrophysical properties for core samples and some elastic moduli such as (Young's modulus, Bulk modulus, Shear modulus, Poisson's ratio and Lame's
... Show More