Preferred Language
Articles
/
ijs-2006
Symmetry Group for Solving Elliptic Euler-Poisson-Darboux Equation

The aim of this article is to study the solution of  Elliptic Euler-Poisson-Darboux equation, by using the symmetry of Lie Algebra of orders two and three, as a contribution in partial differential equations and their solutions.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 04 2021
Journal Name
Iium Engineering Journal
RELIABLE ITERATIVE METHODS FOR SOLVING 1D, 2D AND 3D FISHER’S EQUATION

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceeding Of The 1st International Conference On Advanced Research In Pure And Applied Science (icarpas2021): Third Annual Conference Of Al-muthanna University/college Of Science
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Open Newton Contes Formula for Solving Linear Voltera Integro-Differential Equation of the First Order

  In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented.      The numerical solution of these equations is obtained by using Open Newton Cotes formula.      The Open Newton Cotes formula is applied to find the optimum solution for this equation.      The computer program is written in (MATLAB) language (version 6)

View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
An approximate solution for solving linear system of integral equation with application on "Stiff" problems

An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly

View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Nonclassical Symmetry of Differential Equations

In this paper, we discuss the difference between classical and nonclassical symmetries. In addition, we found the non-classical symmetry of the Benjamin Bona Mahony Equation (BBM). Finally, we found a new exact solution to a Benjamin Bona Mahony Equation (BBM) using nonclassical symmetry.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
The International Journal Of Nonlinear Analysis And Application
Atan regularized for the high dimensional Poisson regression model

Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.

View Publication Preview PDF
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Poisson Regression and Conway Maxwell Poisson Models Using Simulation

Regression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well-  Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.

Paper type:

... Show More
Crossref
View Publication Preview PDF