In this paper, we define the concept of soft -connected sets and soft -connected spaces by using the notion of soft -open sets in soft topological spaces. Several properties of these concepts are investigated.
Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show MoreDeveloping a solid e-voting system that offers fairness and privacy for users is a challenging objective. This paper is trying to address whether blockchain can be used to build an efficient e-voting system, also, this research has specified four blockchain technologies with their features and limitations. Many papers have been reviewed in a study covered ten years from 2011 to 2020. As a result of the study, the blockchain platform can be a successful public ledger to implement an e-voting system. Four blockchain technologies have been noticed from this study. These are blockchain using smart contracts, blockchain relying on Zcash platform, blockchain programmed from scratch, and blockchain depending on digital signature. Each bl
... Show Morethe current study Included, evaluation the impact of Nitrofurantoin drug on liver in albino mice, 128 male albino mice have been used . Animals treared with (150,200 Mg/Kg) for 8 weeks . NFI caused histological changes in liver represented by , swelling of hepatocytes, disappearance of radial arrangement , vaculation of liver cells , increasing of kupffer cells and appearance of giant cells. NFT caused Congestion of blood vessels and infiltration of inflammatory cells in liver in all used concentrations.
In this paper we introduce a new class of operators on Hilbert space. We
call the operators in this class, n,m- powers operators. We study this class
of operators and give some of their basic properties.
Faintly continuous (FC) functions, entitled faintly S-continuous and faintly δS-continuous functions have been introduced and investigated via a -open and -open sets. Several characterizations and properties of faintly S-continuous and faintly -Continuous functions were obtained. In addition, relationships between faintly s- Continuous and faintly S-continuous function and other forms of FC function were investigated. Also, it is shown that every faintly S-continuous is weakly S-continuous. The Convers is shown to be satisfied only if the co-domain of the function is almost regular.
In this thesis, we study the topological structure in graph theory and various related results. Chapter one, contains fundamental concept of topology and basic definitions about near open sets and give an account of uncertainty rough sets theories also, we introduce the concepts of graph theory. Chapter two, deals with main concepts concerning topological structures using mixed degree systems in graph theory, which is M-space by using the mixed degree systems. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are defined and studied. In chapter three we study supra-approximation spaces using mixed degree systems and primary object in this chapter are two topological
... Show MoreIn this article, the additivity of higher multiplicative mappings, i.e., Jordan mappings, on generalized matrix algebras are studied. Also, the definition of Jordan higher triple product homomorphism is introduced and its additivity on generalized matrix algebras is studied.
In this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
Inˑthis work, we introduce the algebraic structure of semigroup with KU-algebra is called KU-semigroup and then we investigate some basic properties of this structure. We define the KU-semigroup and several examples are presented. Also,we study some types of ideals in this concept such as S-ideal,k- ideal and P-ideal.The relations between these types of ideals are discussed and few results for product S-ideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.