Mathematical integration techniques rely on mathematical relationships such as addition, subtraction, division, and subtraction to merge images with different resolutions to achieve the best effect of the merger. In this study, a simulation is adopted to correct the geometric and radiometric distortion of satellite images based on mathematical integration techniques, including Brovey Transform (BT), Color Normalization Transform (CNT), and Multiplicative Model (MM). Also, interpolation methods, namely the nearest neighborhood, Bi-linear, and Bi-cubic were adapted to the images captured by an optical camera. The evaluation of images resulting from the integration process was performed using several types of measures; the first type depends on the determination of quality in the regions of the edges using a contrast measure as well as the number of edges and threshold. The second type is the global one that is based on the parameters of the image region, including the Mean (µ), Standard Deviation (SD), and Signal to Noise Ratio (SNR). The parameters also included the Amount of Information Added (AIA) to the original image, such as those for the total (AIAt) , edges (AIAe), and homogenous (AIAh) regions. The results showed the efficiency of the integration process in the image fusion with different resolutions in one image integrated resolution. The quality measures used were also capable in evaluating the most efficient techniques and determining the accurate information of the resulting image.
In this paper, the bi-criteria machine scheduling problems (BMSP) are solved, where the discussed problem is represented by the sum of completion and the sum of late work times simultaneously. In order to solve the suggested BMSP, some metaheurisitc methods are suggested which produce good results. The suggested local search methods are simulated annulling and bees algorithm. The results of the new metaheurisitc methods are compared with the complete enumeration method, which is considered an exact method, then compared results of the heuristics with each other to obtain the most efficient method.
This article aims to introducenumerical study of two different incompressible Newtonian fluid flows. The first type of flow is through the straight channel, while the second flow is enclosed within a square cavity and the fluid is moved by the upper plate at a specific velocity. Numerically, a Taylor-Galerkin\ pressure-correction finite element method (TGPCFEM) is chosen to address the relevant governing equations. The Naiver-Stoke partial differential equations are usually used to describe the activity of fluids. These equations consist of the continuity equation (conservation of mass) and the time-dependent conservation of momentum, which are preserved in Cartesian coordinates. In this study, the effect of Reynolds number (
... Show MoreIn this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
Triticale is being evaluated as a substitute for corn in animal feed and as a forage crop for Florida. Storage of triticale seed is difficult in Florida's hot and humid climate, and more information about the relationships between equilibrium moisture content (EMC) and equilibrium relative humidity (ERH) at constant temperature (sorption isotherms) of triticale is needed to develop improved storage methods. Therefore, the primary research objective was to measure the EMC for triticale seed at different ERH values at three different constant temperatures (5°C, 23°C, and 35°C) using six desiccation jars containing different saturated salt concentrations. The secondary objective was to determine the best fit equation describing these relati
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.
In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show MoreThis paper is concerned with the solution of the nanoscale structures consisting of the with an effective mass envelope function theory, the electronic states of the quantum ring are studied. In calculations, the effects due to the different effective masses of electrons in and out the rings are included. The energy levels of the electron are calculated in the different shapes of rings, i.e., that the inner radius of rings sensitively change the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. The structures of quantum rings are studied by the one electronic band Hamiltonian effective mass approximati
... Show MoreCox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
In this study, flow-based routing model is investigated. The aim of this study is to increase scalability of flow control, routing and network resources solutions, as well as to improve Quality of Service and performance of the whole system. A method of hierarchical routing is proposed. The goal coordination method alsoused in this paper. Two routing models (model with quadratic objective function and model with traffic engineering) were fully analyzed. The basic functions of the hierarchical routing model levels based on goal coordination method were addressed Both models’ convergence is also explained. The dependence of the coordination iterations number on the packet flow rates for both models is graphically shown. The results shows
... Show More