The cloud-users are getting impatient by experiencing the delays in loading the content of the web applications over the internet, which is usually caused by the complex latency while accessing the cloud datacenters distant from the cloud-users. It is becoming a catastrophic situation in availing the services and applications over the cloud-centric network. In cloud, workload is distributed across the multiple layers which also increases the latency. Time-sensitive Internet of Things (IoT) applications and services, usually in a cloud platform, are running over various virtual machines (VM’s) and possess high complexities while interacting. They face difficulties in the consolidations of the various applications containing heterogenetic workloads. Fog computing takes the cloud computing services to the edge-network, where computation, communication and storage are within the proximity to the end-user’s edge devices. Thus, it utilizes the maximum network bandwidth, enriches the mobility, and lowers the latency. It is a futuristic, convenient and more reliable platform to overcome the cloud computing issues. In this manuscript, we propose a Fog-based Spider Web Algorithm (FSWA), a heuristic approach which reduces the delays time (DT) and enhances the response time (RT) during the workflow among the various edge nodes across the fog network. The main purpose is to trace and locate the nearest f-node for computation and to reduce the latency across the various nodes in a network. Reduction of latency will enhance the quality of service (QoS) parameters, smooth resource distribution, and services availability. Latency can be an important factor for resource optimization issues in distributed computing environments. In comparison to the cloud computing, the latency in fog computing is much improved.
Due to the lack of statistical researches in studying with existing (p) of Exogenous Input variables, and there contributed in time series phenomenon as a cause, yielding (q) of Output variables as a result in time series field, to form conceptual idea similar to the Classical Linear Regression that studies the relationship between dependent variable with explanatory variables. So highlight the importance of providing such research to a full analysis of this kind of phenomena important in consumer price inflation in Iraq. Were taken several variables influence and with a direct connection to the phenomenon and analyzed after treating the problem of outliers existence in the observations by (EM) approach, and expand the sample size (n=36) to
... Show MoreThe consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying
... Show MoreThe direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245V) versus Ag/AgCl in 0.1M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47s-1. The electrode was used as a hydrogen peroxide biosensor with a line
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreAbstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreThe azo ligand obtained from the diazotization reaction of 2-aminobenzothiazole and 4- nitroaniline yielded a novel series of complexes with Co(II), Ni(II), Cu(II), and Zn(II) ions. The complexes were investigated using spectral techniques such as UV-Vis, FT-IR, 1H and 13C NMR spectroscopic analyses, LC-MS and atomic absorption spectrometry, electrical conductivity, and magnetic susceptibility. The molar ratio of the synthesized compounds was determined using the ligand exchange ratio, which revealed the metal-ligand ratios in the isolated complexes were 1:2. The synthesized complexes were tested for antimicrobial activity against S. aureus, E. coli, C. albicans, and C. tropicalis bacterial species. Additionally, their binding affinities we
... Show MorePolarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization co
... Show More