Preferred Language
Articles
/
ijs-1807
ON Numerical Blow-Up Solutions of Semilinear Heat Equations

This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
On the Growth of Solutions of Second Order Linear Complex Differential Equations whose Coefficients Satisfy Certain Conditions

In this paper, we study the growth of solutions of the second order linear complex differential equations  insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Natural Convection Heat Transfer from Interrupted Rectangular Fins

      Numerical simulations have been investigated to study the external free convective heat transfer from a vertically rectangular interrupted fin arrays. The continuity, Naver-Stockes and energy equations have been solved for steady-state, incompressible, two dimensional, laminar with Boussiuesq approximation by Fluent 15 software. The performance of interrupted fins was evaluated to gain the optimum ratio of interrupted length to fin length (

View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Baghdad University College Of Education Ibn Al-haitham
Numerical Solution of Linear System of Fredholm Integral Equations Using Haar Wavelet Method

The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.

View Publication
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus
Publication Date
Sun Jul 04 2021
Journal Name
Journal Of Interdisciplinary Mathematics
Comparison the solutions for some kinds of differential equations using iterative methods

This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.

Scopus (8)
Scopus
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Symmetrical Fibonacci and Lucas Wave Solutions for Some Nonlinear Equations in Higher Dimensions

We consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the  same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.

View Publication Preview PDF
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
Numerical Approach of Linear Volterra Integro-Differential Equations Using Generalized Spline Functions

This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples

Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
An experimental and numerical investigation of heat transfer effect on cyclic fatigue of gas turbine blade

Blades of gas turbine are usually suffered from high thermal cyclic load which leads to crack initiated and then crack growth and finally failure. The high thermal cyclic load is usually coming from high temperature, high pressure, start-up, shut-down and load change. An experimental and numerical analysis was carried out on the real blade and model of blade to simulate the real condition in gas turbine. The pressure, temperature distribution, stress intensity factor and the thermal stress in model of blade have been investigated numerically using ANSYS V.17 software. The experimental works were carried out using a particular designed and manufactured rig to simulate the real condition that blade suffers from. A new cont

... Show More
Crossref (2)
Crossref
View Publication Preview PDF