In this work, a reactive DC magnetron sputtering technique was used to prepare TiO2 thin films. The variation in argon and oxygen gases mixing ratios (4:1, 2:1, 1:1, 1:2, 1:4) was used to achieve optimal properties for gas sensing. In addition, an analysis of the optical XRD properties of TiO2 thin films is presented. High-quality and uniform nanocrystalline films were obtained at a working gas pressure of 0.25 mbar and 1:4 (Ar/O2) gas mixture. The optical properties showed a transparent thin film with uniform adherence to the substrate. The average transmission of the TiO2 films deposited on the glass substrates was higher than 95% over the range of 400 to 800 nm. The optical band gap varied from 3.84 eV to 3.93 eV as a function of oxygen/argon ratios. The XRD pattern showed that the films have an amorphous structure, which is shifted to polycrystalline with increasing oxygen to argon ratio. The sensitivity, response time, and recovery time were measured for TiO2 thin films using NO2 oxidizing gas.
In this research , pure Cadmium Oxide thin films were prepared by thermal evaporation Under vacuum method , where pure cadmium metal was deposited on glass Substrate in Room temperature (300K) at thickness (400 ± 30) nm with Deposition rate(1.1 ± 0.1) nm/sec And then we oxidize a pure cadmium Film in Temperature ( 350ºC ) for one hour with existence air flow. This research contained study of the influence of doping process by Tin metal (Sn) with two different ratios (1,3) % at substrate temperature (473K ) on th
... Show MoreThin films of tin disulphide SnS2 with different thicknesses (2500,4000,5000)A0 have been prepared by chemical spray pyrolises technique on substrate of glass with temperature (603)K . The effect of thickness on the optical properties of SnS2 has been studied.the optical study that includes the absorptance and transmittance spectra in the wavelength range (300900)nm demonstrated that the value of absorption coefficient (α) ) was greater than (104 cm-1) the electronic transitions at the fundamental absorption edge were of the indirect kind whether allowed and forbidden . Absorption edge shift slightly towards higher wave length.The value of energy gaps (Eg) for all the films prepared are decreased with inc
... Show MoreAbstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
The effect of doping by methyl red and methyl blue on the absorption spectra and the optical energy gap of poly (methyl methacrylat) PMMA film have been studied. The optical transmission (T%) in the wavelength range 190-900 nm for films deposited by using solvent casting method were measured. The Absorptance data reveals that the doping affected the absorption edge as a red and blue shift in its values. The films show indirect allowed interband transitions that influenced by the doping. Optical constants; refractive index, extinction coefficient and real and imaginary part of dielectric constant were calculated and correlated with doping.
thin films of se:2.5% as were deposited on a glass substates by thermal coevaporation techniqi=ue under high vacuum at different thikness
Background: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
The change in the optical band gap and optical activation energy have been investigated for pure Poly (vinyl alcohol)and Poly (vinyl alcohol) doped with Aluminum sulphate to proper films from their optical absorption spectra. The absorption spectra were measured in the wave range from (200-700) nm at temperature range (25-140) 0C. The optical band gap (Eg) for allowed direct transition decrease with increase the concentration of Aluminum sulphate. The optical activation energy for allowed direct transition band gap was evaluated using Urbach- edges method. It was found that ?E increases with increasing the concentration of Al2 (SO4)3 and decreases when temperature increases.