A new imidazolidine 4-one derivative, of namly 2-[2-(4-Bromo-phenyl)-imidazo [1,2-a] pyridine-3-yl]-3-(4-nitro-phenyl)-imidazolidine-4-one (BPIPNP) was investigated as corrosion inhibitor for carbon steel in salty (3.5% NaCl) and acidic (0.5M HCl) solutions using potentiometric polarization measurements. The results revealed that the percentage inhibition efficiencies (%IE) in the salty solution (90.67%) are greater than that in the acidic solution (83.52%). Experimentally, the thermodynamic parameters obtained have supported a physical adsorption mechanism and which followed Langmuir adsorption isotherm. Density Functional Theory (DFT) of quantum mechanical method with B3LYP 6-311++G (2d, 2p) level was used to calculate geometrical structure, physical properties and inhibition efficiency parameters, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. The surface changes of carbon steel were studied using Scanning Electron Microscopy SEM and Atomic Force Microscopy (AFM) techniques.
DFT (3-21G, 6-31G and 6-311G/ B3LYP) and Semi-empirical PM3 methods were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) of the Tri-rings layer (6,0) Zigzag single wall carbon nanotube (SWCNT) at their equilibrium geometries which was found to have D6h symmetry point group with C-C bond alternation in all tube rings.as well as mono ring layer. Assignments of the modes of vibration were done depending on the pictures of their modes applying by Gaussian 03 program. The whole relations for the vibration modes were also done including (CH stretching, CC stretching, deformation in plane of the molecule (δCH, δring and δCCC), deformation out of plane of the molecule (CH and
... Show MoreExtended calculations for sputtering yield through bombed Nickel – target by Xenon ions plasma are accomplished. The calculations include changing the input parameters: the energy of xenon ions plasma, the hit target angle of nickel target, thickness of the nickel target layer, and the slight change in the surface binding energy of Nickel. The program TRIM is used to accomplish these calculations. The results show that the sputtering yields directly dependent on these parameters. The change in angles of incidence plasma ions and energy leads to a significant change in the sputtering yields. On the other hand, the sputtering yields ore highly affected by changing target width and surface binding energy at fixed ion parameters.
The real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.
Various of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
New thermally stable aromatic poly(amide-imide)s ( PAI1- PAI4 ) were synthesized from direct polycondensation reaction of Terephthalic acid and Phthalic acid with two new different diamine monomers derivatives of 1,2,4,5-tetracarboxilic benzene dianhydride as a second diacides in a medium consisting of triphenyl phosphite (TPP) in N-methyl-2pyrrolidone (NMP) / pyridine solution containing dissolved calcium chloride CaCl2. The polymerization reaction produced a series of novel poly(amide-imide) in high yield. The new monomers were characterized by FTIR, 1H-NMR spectroscopy. The resulting polymers were typically characterized by means of FT-IR, 1H-NMR spectroscopy, and solubility tests. Thermal properties of the poly(amide-imide)s were als
... Show MoreA new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .
|
A potentiostatic study for the corrosion of pure zinc in 0.01 M HCl was achieved in absence and presence of (linear alkylbenzene solfonate LAS) detergents in a range of concentrations (0-50) mg/L. The electrochemical studies included anodic, cathodic polarization by using potentiostat over temperature rang (293- 323) K. The mechanism of corrosion rate of pure zinc was suggested by evaluating of αa , αc , ba , bc , i0 , Rp and the kinetic parameters also calculated ( Ea , A) at the above temperature rang, The thermodynamic of corrosion, corrosion accelerating and corrosion protecting were investigated by calculating (∆G, ∆H and ∆s) values
This work provides an analysis of the thermal flow and behavior of the (load-free) refrigerator compartment. The main goal was to compare the thermal behavior inside the refrigerator cavity to the freezer door (home refrigerator) effect and install a fan on the freezer door while neglecting the heat transmitted by thermal radiation. Moreover, the velocity distribution, temperature, and velocity path lines are theoretically studied. This was observed without affecting the shelves inside the cabinet and the egg and butter places on the refrigerator door as they were removed and the aluminum door replaced with a glass door. This study aims to expand our knowledge about the temperature and flow fields of this refrigerator mo
... Show MoreAbstract. This study presents experimental and numerical investigation on the effectiveness of electrode geometry on flushing and debris removal in Electrical Discharge Drilling (EDD) process. A new electrode geometry, namely side-cut electrode, was designed and manufactured based on circular electrode geometry. Several drilling operations were performed on stainless steel 304 using rotary tubular electrodes with circular and side-cut geometries. Drilling performance was characterized by Material Removal Rate (MRR), Electrode Wear Rate (EWR), and Tool Wear Ratio (TWR). Dimensional features and surface quality of drilled holes were evaluated based on Overcut (OC), Hole Depth (HD), and Surface Roughness (SR). Three-dimensional
... Show More