DFT (3-21G, 6-31G and 6-311G/ B3LYP) and Semi-empirical PM3 methods were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) of the Tri-rings layer (6,0) Zigzag single wall carbon nanotube (SWCNT) at their equilibrium geometries which was found to have D6h symmetry point group with C-C bond alternation in all tube rings.as well as mono ring layer. Assignments of the modes of vibration were done depending on the pictures of their modes applying by Gaussian 03 program. The whole relations for the vibration modes were also done including (CH stretching, CC stretching, deformation in plane of the molecule (δCH, δring and δCCC), deformation out of plane of the molecule (CH and ring (CCC). Also include the assignment of puckering, breathing and clock-anticlockwise bending vibrations.
Comparison for the geometry (the relations for axial bonds, which are the vertical C-C bonds (linear bonds) in the rings layer and for circumferential bonds which are the outer ring bonds), electronic properties and IR active vibration frequencies (asymmetric modes) of (Mono and Tri) rings layer were done. Clear relationships were found in the results of an odd layer number (Mono and Tri-rings layer). The theoretical results allow a comparative view of the charge density at the carbon atoms too.
Density Functional Theory (DFT) method of the type (B3LYP) and a Gaussian basis set (6-311G) were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) at the equilibrium geometry of the Di and Tetra-rings layer (6, 0) zigzag single wall carbon nanotubes (SWCNTs) by using Gaussian-09 program. Both were found to have the same symmetry of D6d point group with C--C bond alternation in all tube rings (for axial bonds, which are the vertical C--Ca bonds in rings layer and for circumferential bonds C—Cc in the outer and mid rings bonds). Assignments of the modes of vibration IR active and inactive vibration frequ
... Show MoreSemi-empirical methods were applied for calculating the vibration frequencies and IR absorption intensities for normal coordinates of the {mono (C56H28), di (C84H28), tri (C112H28) and tetra (C140H28)} -rings layer for (7,7) armchair single wall carbon nanotube at their equilibrium geometries which were all found to have D7d symmetry point group.
Assignment of the modes of vibration (3N-6) was done depending on the pictures of their modes by applying (Gaussian 03) program. Comparison of the vibration frequencies of (mono, di, tri and tetra) rings layer which are active in IR, and inactive in Ramman spectra. For C-H stretching vibrat
... Show MoreDensity Functional Theory (DFT) calculation of the type (B3LYP) and 6-311G basis set level using Gaussian-03 program were carried out for equilibrium geometry of construction units of (6,0) linear ZigZag SWCNT (mono, Di, Tri and Tetra ring layers), to evaluate the geometrical structure (bond length), symmetries, physical properties and energetic such as standard heat of formation (ΔH0f), total energy (Etot.), dipole moment (μ), Highest Occupied Molecular Orbital Energy (EHOMO), Lowest Unoccupied Molecular Orbital Energy (ELUMO), energy gap (ΔEHOMO-LUMO), the distribution of electron density () and vibration frequencies, all at their equilibrium geometries. Assignment of the vibration frequencies according to the group theory was do
... Show MoreQuantum calculations on the most stable structure were carried
out for calculating the electronic properties, energies and the charge
density at the Carbon and Hydrogen atoms by Semi-empirical
method (PM3) of zigzag carbon nano tube CNT (9,0) (SWCNTs), at
the equilibrium geometry depending on the pictures of Zigzag
CNT(9,0) which was found to has D3d symmetry point group by
applying for (Gaussian 2003) program. In this work the results
include calculation the relation for axial bonds length, which are the
vertical C-C bonds (annular bonds) in the rings and bonds length
which are in the outer ring that called the circumferential bonds. Also
include a different kind of vibration modes like breathing, puckering
PM3 and DFT (6-311G/ B3LYP) level calculations were carried out for the 5Radialene molecule, which is exhibit D5h symmetry. The obtained equilibrium geometry was applied for the calculation of all 3N−6 vibration frequencies, and for the analysis of its normal coordinates and symmetry species, in addition to some physical properties such as heat of formation, total energy, dipole moment and energy difference of HOMO and LUMO levels (ΔELUMO-HOMO), using Gaussian-03 program. The so calculated frequencies according to DFT (6-311G/ B3LYP) fall in the ranges;
CH2 str. (3016-3098 cm-1), C=C str. (1662-1709cm-1), ring (C-C str.) (1268-1464 cm-1). δCH2 (890-1317cm-1), (δCCC) (562-631cm-1), γCH2 (738-946cm-1) and γring (γCCC) (
PM3 semiempirical method and Density Functional Theory (DFT) calculations of the type (B3LYP) and a Gaussian basis set (6-311G) were carried out for fullerene C60 molecule with its construction units (5radialene, 1,2,3-trimethylene indan, and corannulene), to evaluate the geometrical structure (bond lengths, symmetry, and energetic such as heat of formation ΔH0f, total energy Etot., dipole moment μ, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap ΔEHOMO-LUMO), the distribution of electron density and vibration frequencies, all at their equilibrium geometries. Assignment of the vibrations modes was done according to the movement of the atoms as a result of DFT calculatio
... Show MorePM3 semiempirical method and Density Functional Theory (DFT) calculations of the type (B3LYP) and a Gaussian basis set (6-311G) were carried out for fullerene C60 molecule with its construction units (5radialene, 1,2,3-trimethylene indan, and corannulene), to evaluate the geometrical structure (bond lengths, symmetry, and energetic such as heat of formation ΔH0f, total energy Etot., dipole moment μ, EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), energy gap ΔEHOMO-LUMO), the distribution of electron density and vibration frequencies, all at their equilibrium geometries. Assignment of the vibrations modes was done according to the movement of the atoms as a result of DFT calculatio
... Show MoreThe current study deals with host-guest complex formation between cucurbit [7] urils as host and lansoprazole as guesti using PM3 (semi empirical molecules orbital calculations) also DFT calculations. In this complex, the formation of hydrogen bonding may be occurred through portal oxygen atoms(O2) of cucurbit [7] urils and amine groups (NH 2 )of the drug. The energies of HOMO and LUMO orbital’s have been computed for the host guest complex and its components. The result of the stabilization energy explained a complex formation.
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show More