Wisconsin Breast Cancer Dataset (WBCD) was employed to show the performance of the Adaptive Resonance Theory (ART), specifically the supervised ART-I Artificial Neural Network (ANN), to build a breast cancer diagnosis smart system. It was fed with different learning parameters and sets. The best result was achieved when the model was trained with 50% of the data and tested with the remaining 50%. Classification accuracy was compared to other artificial intelligence algorithms, which included fuzzy classifier, MLP-ANN, and SVM. We achieved the highest accuracy with such low learning/testing ratio.
BACKGROUND: Breast cancer remains the most common malignancy among the Iraqi population. Affected patients exhibit different clinical behaviours according to the molecular subtypes of the tumour. AIM: To identify the clinical and pathological presentations of the Iraqi breast cancer subtypes identified by Estrogen receptors (ER), Progesterone receptors (PR) and HER2 expressions. PATIENTS AND METHODS: The present study comprised 486 Iraqi female patients diagnosed with breast cancer. ER, PR and HER2 contents of the primary tumours were assessed through immunohistochemical staining; classifying the patients into five different groups: Triple Negative (ER/PR negative/HER2 negative), Triple Positive (ER/PR positive/HER2 positive), Luminal A (ER
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show MoreIntroduction: Breast cancer is the most common cancer and the major cause of cancer related deaths among Iraqi women. Due to the relatively late detection of breast cancer, the majority of the patients are still treated by modified radicle mastectomy. Aim: To assess the time lag between diagnosis of breast cancer and mastectomy among Iraqi patients; correlating the findings with other clinicopathological characteristics of the disease. Patients and methods: This retrospective study enrolled 226 Iraqi female patients who were diagnosed with breast cancer. Data were registered on the exact time period between signing the histopathological report and the surgical treatment. Other recorded variables included the age of the patients, their level
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show MoreIn this work, Kinetic Phosphorescence Analyzer (KPA) has been used to measure the concentrations of uranium (UC) and Amorphous crystals (AMO) in urine samples of breast cancer patients in Baghdad. Additionally, a relation between UC and AMO with respect to patient's age has been deduced and studied.
Forty one urine samples of patients and five for healthy were taken from females lived in different residential area of Baghdad. The measured maximum UC value for urine samples of patients was 2.35 ± 0.053, the minimum value was 0.86 ± 0.034 μg/L, and an overall average was 1.6 ± 0.027 μg/L while the average UC for healthy females was 1.03 ± 0.020 μg/L.
From these results, AMO concentrations were found for all breast cancer patie
Breast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show More