In this paper, a numerical approximation for a time fractional one-dimensional bioheat equation (transfer paradigm) of temperature distribution in tissues is introduced. It deals with the Caputo fractional derivative with order for time fractional derivative and new mixed nonpolynomial spline for second order of space derivative. We also analyzed the convergence and stability by employing Von Neumann method for the present scheme.
Polyethersulfone (PES) ultrafiltration membrane blending NaX zeolite crystals as a hydrophilic additive was examined for zinc (II) and lead ions Pb (II) removal from aqueous solutions. The effect of NaX zeolite content on the permeation flux and removal efficiency was studied. The results showed that adding zeolite to the polymer matrix enhanced the permeation flux. The permeation flux of all the zeolite/PES matrix membranes was higher than the pristine membrane. No significant improvement was observed in the removal of Zn (II) ions using all prepared membranes as the removal percentage did not raise above 29.2%. However, the removal percentage of Pb (II) ions was enhanced to 97% using a membrane containing 0.9%wt. zeolite. Also, it was
... Show MoreIn this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreThe main objective of this research is to find the coefficient of permeability (k) of the soil and especially clayey soil by finding the degree of consolidation (rate of consolidation). New modify procedure is proposed by using the odometer (consolidation) device. The ordinary conventional permeability test usually takes a long time by preparing and by testing and this could cause some problems especially if there is a need to do a large number of this test and there were a limited number of technicians and/or apparatus. From this point of view the importance of this research is clear, since the modified procedure will require a time of 25 minute only. Derivation made to produce an equation which could be used to fined the permeabi
... Show MoreIn this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.
An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .