Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreIn this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
In this paper, the concept of soft closed groups is presented using the soft ideal pre-generalized open and soft pre-open, which are -ᶅ- - -closed sets " -closed", Which illustrating several characteristics of these groups. We also use some games and - Separation Axiom, such as (Ʈ0, Ӽ, ᶅ) that use many tables and charts to illustrate this. Also, we put some proposals to study the relationship between these games and give some examples.
Numerous blood biomarkers are altered in COVID-19 patients; however, no early biochemical markers are currently being used in clinical practice to predict COVID-19 severity. COVID-19, the most recent pandemic, is caused by the SRS-CoV-2 coronavirus. The study was aimed to identify patient groups with a high and low risk of developing COVID-19 using a cluster analysis of several biomarkers. 137 women with confirmed SARS CoV-2 RNA testing were collected and analyzed for biochemical profiles. Two-dimensional automated hierarchy clustering of all biomarkers was applied, and patients were sorted into classes. Biochemistry marker variations (Ferritin, lactate dehydrogenase LDH, D-dimer, and C- reactive protein CRP) have split COVID-19 patien
... Show MoreIn this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
The life on earth is driven by energy, supplied by the tiny organelles of the cell called mitochondria and they are usually stated as the powerhouses of the cell. In population genetics, Mitochondrial DNA (mtDNA) is used extensively to categorize individuals or populations. The mutation sites observed in human mtDNA by comparing with the reference sequence (rCRS) are termed into definite human mtDNA haplogroups. Previous studies showed that mtDNA specific haplogroups and polymorphisms were established to be linked with various human diseases, including cancer in numerous populations. Furthermore, it is also known that several mitochondrial DNA polymorphisms are implicated in enhanced production of Reactive Oxygen Species (ROS
... Show MoreThe main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreIn this paper, we present a concept of nC- symmetric operator as follows: Let A be a bounded linear operator on separable complex Hilbert space , the operator A is said to be nC-symmetric if there exists a positive number n (n such that CAn = A*ⁿ C (An = C A*ⁿ C). We provide an example and study the basic properties of this class of operators. Finally, we attempt to describe the relation between nC-symmetric operator and some other operators such as Fredholm and self-adjoint operators.