Texture recognition is used in various pattern recognition applications and texture classification that possess a characteristic appearance. This research paper aims to provide an improved scheme to provide enhanced classification decisions and to decrease processing time significantly. This research studied the discriminating characteristics of textures by extracting them from various texture images using discrete Haar transform (DHT) and discrete Fourier transform DFT. Two sets of features are proposed; the first set was extracted using the traditional DFT, while the second used DHT. The features from the Fourier domain are calculated using the radial distribution of spectra, while for those extracted from Haar Wavelet the statistical distribution of various relative moments was adopted. Four types of Euclidean distance metrics were used for classification decision
purposes. The considered method was applied on 475 classes of textures belonged to 32 sets from Salzburg Texture Image Database, each set holding 16 images per class, so the a total of 7600 images were tested. Each image was separated into seven bands of color component (i.e., red, green, blue, and gray….). Concepts of average and standard deviation were calculated to determine the inter/intra scatter analysis for each feature to find out the best discriminating features that can be used.
The final result of DHT was 99.98 for the testing sets and 99.71 for the training sets, while the final result of DFT was 98.63 for the testing sets and 93.74 for the training sets.
There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreErratum for Organic acid concentration thresholds for ageing of carbonate minerals: Implications for CO2 trapping/storage.
Abstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show MoreThe research amid to find out the extent of Iraqi oil companies commitment to implement internal control procedures in accordance with the updated COSO framework. As the research problem was represented in the fact that many of the internal control procedures applied in the Iraqi oil companies are incompatible with most modern international frameworks for internal control, including the integrated COSO framework, issued by the Committee of Sponsoring Organizations of the Tradeway Committee. The research followed the quantitative approach to handling and analysing data by designing a checklist to represent the research tool for collecting data. The study population was represented in the Iraqi oil companies, while the study sample
... Show MoreBackground: Ultrasonography has been used to examine the thickness of the lower uterine segment in women with previous cesarean sections in an attempt to predict the risk of scar dehiscence during subsequent pregnancy. The predictive value of such measurement has not been adequately assessed. Objectives: To correlate lower uterine segment thickness measured by trans abdominal ultrasound in pregnant women with previous cesarean section with that measured during cesarean section by caliper and to find out minimum lower uterine segment thickness indicative of integrity of the scar.Methods: A prospective observational study at Elwyia Maternity Teaching Hospital, from January 2011 to January 2012. A total of 143 women were enrolled in the stu
... Show MoreA new, simple, sensitive and fast developed method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation a burgundy color complex between methyldopa andammonium ceric (IV) nitrate in aqueous medium using long distance chasing photometer NAG-ADF-300-2. The linear range for calibration graph was 0.05-8.3 mmol/L for cell A and 0.1-8.5 mmol/L for cell B, and LOD 952.8000 ng /200 µL for cell A and 3.3348 µg /200 µL for cell B respectively with correlation coefficient (r) 0.9994 for cell A and 0.9991 for cell B, RSD % was lower than 1 % for n=8. The results were compared with classical method UV-Spectrophotometric at λ max=280 n
... Show More