Preferred Language
Articles
/
ijs-1648
Semiprime RΓ-Submodules of Multiplication RΓ-Modules
...Show More Authors

Let R be a Γ-ring and G be an RΓ-module. A proper RΓ-submodule S of G is said to be semiprime RΓ-submodule if for any ideal I of a Γ-ring R and for any RΓ-submodule A of G such that or which implies that . The purpose of this paper is to introduce interesting results of semiprime RΓ-submodule of RΓ-module which represents a generalization of semiprime submodules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coprime Submodules
...Show More Authors

  Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if   is a coprime R-module, where   is a coprime R-module if for any r  R, either O      r or     r .         In this paper we study coprime submodules and give many properties related with this concept.

View Publication Preview PDF
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 17 2019
Journal Name
Iraqi Journal Of Science
On Commutativity of Prime and Semiprime - Rings with Reverse Derivations
...Show More Authors

Let M be a weak Nobusawa -ring and γ be a non-zero element of Γ. In this paper, we introduce concept of k-reverse derivation, Jordan k-reverse derivation, generalized k-reverse derivation, and Jordan generalized k-reverse derivation of Γ-ring, and γ-homomorphism, anti-γ-homomorphism of M. Also, we give some commutattivity conditions on γ-prime Γ-ring and γ-semiprime Γ-ring .

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Jan 26 2024
Journal Name
Iraqi Journal Of Science
On Reverse – Centralizers Of Semiprime Rings
...Show More Authors

In this paper we study necessary and sufficient conditions for a reverse- centralizer of a semiprime ring R to be orthogonal. We also prove that a reverse- centralizer T of a semiprime ring R having a commuting generalized inverse is orthogonal

View Publication Preview PDF
Publication Date
Sat Mar 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
á´ª-Prime Submodules
...Show More Authors

      Let R be a commutative ring with identity and M be an unitary R-module. Let (M) be the set of all submodules of M, and : (M)  (M)  {} be a function. We say that a proper submodule P of M is -prime if for each r  R and x  M, if rx  P, then either x  P + (P) or r M  P + (P) . Some of the properties of this concept will be investigated. Some characterizations of -prime submodules will be given, and we show that under some assumptions prime submodules and -prime submodules are coincide. 

View Publication Preview PDF
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
NS-Primary Submodules
...Show More Authors

Let R be a commutative ring with identity and let Mbe a unitary R-module. We shall say that a proper submodule N of M is nearly S-primary (for short NS-primary), if whenever , , with  implies that either  or there exists a positive integer n, such that , where  is the Jacobson radical of M. In this paper we give some new results of NS-primary submodule. Moreover some characterizations of these classes of submodules are obtained.

View Publication Preview PDF
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Generalized Strong Commutativity Preserving Centralizers of Semiprime Γ- Rings
...Show More Authors

     In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.

View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Coregular Modules
...Show More Authors

In this paper we study the concepts of copure submodules and coregular
modules. Many results related with these concepts are obtained.

View Publication Preview PDF
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On e-Small Submodules
...Show More Authors

Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.

View Publication Preview PDF