In this paper, we study the impacts of variable viscosity , heat and mass transfer on magneto hydrodynamic (MHD) peristaltic flow in a asymmetric tapered inclined channel with porous medium . The viscosity is considered as a function of temperature. The slip conditions at the walls were taken into consideration. Small
Reynolds number and the long wavelength approximations were used to simplify the governing equations. A comparison between the two velocities in cases of slip and no-slip was plotted. It was observed that the behavior of the velocity differed in the two applied models for some parameters. Mathematica software was used to estimate the exact solutions of temperature and concentration profiles. The resolution of the equations to the momentum was based on the perturbation method to find the axial velocity, pressure gradient and trapping phenomenon. The influences of the various flow parameters of the problem on these distributions were debated and proved graphically by figures.
As a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show MoreThe laminar fluid flow of water through the annulus duct was investigated numerically by ANSYS fluent version 15.0 with height (2.5, 5, 7.5) cm and constant length (L=60cm). With constant heat flux applied to the outer duct. The heat flux at the range (500,1000,1500,2000) w/m2 and Reynolds number values were ≤ 2300. The problem was 2-D investigated. Results revealed that Nusselt number decrease and the wall temperature increase with the increase of heat flux. Also, the average Nusselt number increase as Re increases. And as the height of the annulus increase, the values of the temperature and the local and average Nusselt number increase.
In this work, we are Study the effect of annealing temperature on the structure of a-Ge films doped with Sb and the electrical properties of a-Ge:Sb/c-Si heterojunction fabricated by deposition of a-Ge:Sb film on c-Si by using thermal evaporation. Electrical properties of aGe:Sb/c-Si heterojunction include I-V characteristics in dark at different annealing temperatures and C-V characteristics and with the C-V characteristics suggest that the fabricated heterojunction was abrupt type, built in potential determined by extrapolation from 1/C2-V curve and show that the built - inpotential (Vbi) for the Ge:Sb/Si system increases with the increase of annealing temperatures
Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
The aim of this paper is the study of the influence magnetic field on steady state
flows and heat transfer in microchannels between two parallel plates.
It is found that the motion equations are controlled by many dimensionless
parameter, namely magnetic field parameter M Reynolds number Re, physical
quantity at wall W and Knudsen number Kn also found that the energy equations
are controlled by many dimensionless parameter, namely magnetic field parameter
M Reynolds number Re, physical quantity at wall W and Knudsen number Kn ,
Prinkman number Br and Peclet number Pe.
The equations which controlled this type of fluid flow are complicated, so finding
an analytical solution is not easy.
We obtained the velocit
Experimental study has been conducted for laminar natural convection heat transfer of air flow through a rectangular enclosure fitted with vertical partition. The partition was oriented parallel to the two vertical isothermal walls with different temperatures, while all the other surfaces of the enclosure were insulated. In this study a test rig has been designed and constructed to allow studying the effect of Rayleigh number, aperture height ratio, partition thickness, the position of aperture according to the side walls and according to the height, the position of the partition according to the hot wall, and partition inclination. The experiments were carried out with air as the working fluid for Rayleigh number range (5*107 – 1.3*10
... Show More