In this paper, a hybrid image compression technique is introduced that integrates discrete wavelet transform (DWT) and linear polynomial coding. In addition, the proposed technique improved the midtread quantizer scheme once by utilizing the block based and the selected factor value. The compression system performance showed the superiority in quality and compression ratio compared to traditional polynomial coding techniques.
In this paper, a new analytical method is introduced to find the general solution of linear partial differential equations. In this method, each Laplace transform (LT) and Sumudu transform (ST) is used independently along with canonical coordinates. The strength of this method is that it is easy to implement and does not require initial conditions.
In this work, linear and nonlinear optical properties of two types of Iraqi heavy crude oil extracted from fields in southern Iraq were determined. The nonlinear optical properties were measured utilizing Z-scan technology with He-Ne laser at 632.8 nm. It was found that nonlinear refractive index (NLR) values for the Basra and Kut heavy crude oil samples are 6.34381×10-4 and 8.25108×10-4 cm2/mW, respectively, while those for the nonlinear absorption coefficient (NLA) are 2.68942×10-5 and 2.58874×10-5 , respectively. These results showed that the two samples with linear and nonlinear optical properties can be used in optics field applications as
... Show MoreThe transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.
Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio
... Show MoreThe goal of this work is demonstrating, through the gradient observation of a of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of ( -system) was developed based on finite time ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo
... Show MoreThe class of quasi semi -convex functions and pseudo semi -convex functions are presented in this paper by combining the class of -convex functions with the class of quasi semi -convex functions and pseudo semi -convex functions, respectively. Various non-trivial examples are introduced to illustrate the new functions and show their relationships with -convex functions recently introduced in the literature. Different general properties and characteristics of this class of functions are established. In addition, some optimality properties of generalized non-linear optimization problems are discussed. In this generalized optimization problems, we used, as the objective function, quasi semi -convex (respectively, strictly quasi semi -convex
... Show MoreThe integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations