The presence of natural voids and fractures (weak zones) in subsurface gypsiferous soil and gypsum, within the University of Al-Anbar, western Iraq. It causes a harsher problem for civil engineering projects. Electrical resistivity technique is applied as an economic decipher for investigation underground weak zones. The inverse models of the Dipole-dipole and Pole-dipole arrays with aspacing of 2 m and an n-factor of 6 clearly show that the resistivity contrast between the anomalous part of the weak zone and the background. The maximum thickness and shape are well defined from 2D imaging with Dipole-dipole array, the maximum thickness ranges between 9.5 to 11.5 m. It is concluded that the 2D imaging survey is a useful technique and more effective for determining and mapping subsurface weak zones (voids, fracture and cavities), when taken in consideration using the suitable a-spacing and n-factor for each electrode array, especially with the Dipole-dipole array which provided the best imaging of the
subsurface shape of the weak zones.
An electrical survey was carried out by using 2D imaging technique at (15)
station. The study area is located southern Al-Shihaby area, south-east of Wasit
governorate, Eastern Iraq. The numbers of the employed electrodes were (120) and
the (a) spacing equal to (10m), and the total length of survey line is (1200m). The
inverse models of 2D imaging showed one Quaternary aquifer located in the
Quaternary deposits which comprises in alluvial fan and wind deposits of
(Pleistocene – Holocene) ages. Layers of aquifer consist of gravel and sand with
little silt. Low resistivity values reflected the presence of clay layers, and increasing
salinity of water gradually with the depth. The aquifer occurs at minimum depth
The 2D imaging survey was carried out using Wenner-Schlumberger array through (11) 2D survey lines distributed within and out of Abu-Jir fault zone, Southwest of Karbala City, central Iraq. The aim is to delineate subsurface fractures density. The total length of each 2D survey line is (600m.) with the unit electrode spacing (a) equals to (10m.).The results showed two types of fractures zones. The first type is formed by dissolution process of carbonate rocks, while the second fractures zone is formed from tectonic movements, and it includes two types of fractures system, oblique and vertical fractures.
This study includes comparison between subsurface fracture density within and out of Abu- Jir fault zone. This comparison showed that
Abstract: This study aims to investigate the effects of solvents of various polarities on the electronic absorption and fluorescence spectra of RhB and Rh6G. The singlet‐state excited dipole moments (me) and ground state dipole moments (mg) were estimated from the equations of Bakshiev -Kawski and Chamma‐ Viallet using the variation of Stokes shift along with the solvent’s dielectric constant (e) and refractive indexes (n). The observed singlet‐state excited dipole moments were found to be larger than the ground‐state ones. Moreover, the obtained fluorescence quantum yield values were influenced by the environment of the fluorescing molecule. Consequently, the concentration of the dye solution, excited singlet state absorption and
... Show MoreIn the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2,
... Show MoreKirchhoff Time Migration method was applied in pre-and post-Stack Time Migration for post-processing of images collected from Balad-Samarra (BS-92) survey line that is sited across Ajeel anticline oilfield. The results showed that Ajeel anticline structure was relocated at the correct position in the migrated stacked section. The two methods (Pre and Post) of migration processing showed enhanced subsurface images and increased horizontal resolution, which was clear after the broadening the syncline and narrowing or compressing the anticline. However, each of these methods was associated with migration noise. Thus, a Post-Stack process was applied using Dip-Removal (DDMED) and Band-Pass filters to eliminate the artifact noise. The time-fr
... Show MoreElectrical resistivity methods are one of the powerful methods for the detection and evaluation of shallower geophysical properties. This method was carried out at Hit area, western Iraq, in two stages; the first stage involved the use of 1Dimensional Vertical Electrical Sounding (VES) technique in three stations using Schlumberger array with maximum current electrodes of 50m. The second stage included the employment of two dimension (2D) resistivity imaging technique using dipole-dipole array with a-spacing of 4m and n-factor of 6 in two stations. The 1D survey showed good results in delineating contaminated and clear zones that have high resistivity contrast. Near the main contaminated spring, the 2D resi
... Show MoreWe study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show MoreCracking of soils affects their geotechnical properties and behavior such as soil strength and stability. In this paper, 2D Electrical Resistivity Imaging Method, as a non-invasive technique, was adopted to investigate the effect of soil cracks of a centemetric scale on resistivity of sandy soil. The electrical resistivity measurements were carried out using ABEM SAS 300C Terrameter system at a laboratory scale using Wenner array. The measurements were interpreted using horizontal profiles, forward modeling and 2D inverse resistivity sections. The results showed that soil cracks cause significant changes in soil resistivity. These changes can be attributed to the high resistivity contrast between the highly resistive air-filled cracks an
... Show More
|
In this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show More