Preferred Language
Articles
/
ijs-12449
Fuzzy Linear Discriminant Analysis Clustering With Its Application

Many fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Fuzzy-Parametric Linear Programming Problems

The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.

View Publication Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
User (K-Means) for clustering in Data Mining with application

 

 

  The great scientific progress has led to widespread Information as information accumulates in large databases is important in trying to revise and compile this vast amount of data and, where its purpose to extract hidden information or classified data under their relations with each other in order to take advantage of them for technical purposes.

      And work with data mining (DM) is appropriate in this area because of the importance of research in the (K-Means) algorithm for clustering data in fact applied with effect can be observed in variables by changing the sample size (n) and the number of clusters (K)

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
MR Brain Image Segmentation Using Spatial Fuzzy C- Means Clustering Algorithm

conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation. 

Crossref
View Publication Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Properties of Fuzzy Compact Linear Operators on Fuzzy Normed Spaces

In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact

... Show More
Scopus (11)
Crossref (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Discriminant Analysis to Assess Deprivation Index in Iraq

The aim of this study is to achieve the best distinguishing function of the variables which have common characteristics to distinguish between the groups in order to identify the situation of the governorates that suffer from the problem of deprivation. This allows the parties concerned and the regulatory authorities to intervene to take corrective measures. The main indicators of the deprivation index included (education, health, infrastructure, housing, protection) were based on 2010 data available in the Central Bureau of Statistics

Crossref
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Linear Programming problems

ان الغرض من هذا البحث هو المزج بين القيود الضبابية والاحتمالية. كما يهدف الى مناقشة اكثر حالات مشكلات البرمجة الضبابية شيوعا وهي عندما تكون المشكلة الضبابية تتبع دالة الانتماء مرة دالة الاتنماء المثلثية مرة اخرى، من خلال التطبيق العملي والتجريبي. فضلا عن توظيف البرمجة الخطية الضبابية في معالجة مشكلات تخطيط وجدولة الإنتاج لشركة العراق لصناعة الأثاث، وكذلك تم استخدام الطرائق الكمية للتنبؤ بالطلب واعتماده

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Application Model for Linear Programming with an Evolutionary Ranking Function

One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 02 2024
Journal Name
Iraqi Journal Of Science
Using Sensitivity Analysis in Linear Programming with Practical Physical Applications

Linear programming currently occupies a prominent position in various fields and has wide applications, as its importance lies in being a means of studying the behavior of a large number of systems as well. It is also the simplest and easiest type of models that can be created to address industrial, commercial, military and other dilemmas. Through which to obtain the optimal quantitative value. In this research, we dealt with the post optimality solution, or what is known as sensitivity analysis, using the principle of shadow prices. The scientific solution to any problem is not a complete solution once the optimal solution is reached. Any change in the values of the model constants or what is known as the inputs of the model that will chan

... Show More
Preview PDF