In this paper, the single scatter model for gamma backscatter densitometer has been used to investigate the materials of Halley’s nucleus. Monte Carlo simulation tool is used for the evaluation and calibration of gamma backscatter densitometer; and also used to calculate the bulk density. A set of parameters effecting detected count rate of γ – ray backscattering, mainly the source energy, the source – detector separation (sonde length), density and composition, were calculated.
Results obtained with the present method are compared with experimental data and the computed data may be considered entirely satisfactory.
In this work, the technique of attenuation of gamma ray to calculate the density of comet nucleus materials (C/2009 P1 (GARRADD) at different range of energy (0.2- 0.9 MeV). also, the single scattering model for gamma rays has been assumed that photons reaching the detector with scattered only once in the material. The program has been designed and written in FORTRAN language (77 – 90) to calculate the density for molecules using Monte Carlo method was used to simulate the scattering and absorption of photons in semi- infinite material. Gamma ray interacts with the matter by three mainly interactions: Photoelectric effect, Compton scattering and Pair production (electron and positron). On the 137Cs source energy (662 keV), Compton scat
... Show MoreMultipole mixing ratios for gamma transition populated in from reaction have been studied by least square fitting method also transition strength ] for pure gamma transitions have been calculated taking into account the mean life time for these levels .
In the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having h
... Show MoreA Monte Carlo simulation has been used to design program which simulate gamma rays backscattering system. Gamma ray backscattering is very important to get useful information about shielding, absorption and counting problems. Simulation was done of a 661.6 KeV from a collimated point source of 137Cs. When increasing the scattering angle of photon which emerging from Iron target , as the incident gamma beam angles of 15°, 45° and 75°, the results showed that the single scattering count decreases. Whereas, this count increased by increasing the incident angle. In addition, the single scattering peak (count) increases according to the sample thickness until „saturation thickness‟. Our simulation results are useful to evaluate the opt
... Show MoreIn this work, the total linear attenuation coefficients µ(cm
-1
) were calculated and studied
for particulate reinforced polymer-based composites. Unsaturated polyester (UP) resin was
used as a matrix filled with different concentrations of Al, Fe, and Pb metal powders as
reinforcements. The effect of the metal powders addition at different weight percentages in
the range of (10,20,30,40,50)wt % and gamma energy on attenuation coefficients was studied.
The results show, as the metallic particulates content increase, the attenuation coefficients will
increase too, while it, were exhibited a decrease in their values when the gamma energy
increase.The total linear attenuation coefficients of gamma ray fo
The present calculation covers the building shield during irradiation process and under water storage of three milion curries Cobalt-60 radiation source the calculation results in design requirement of 8m depth of water in the source stoeage pool
The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show MoreThe dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each
... Show MoreIn the present work , the a2 - ratio method has been used to calculate the multipole mixing ratios , 5 - values • of y - transitions from excited levels of deformation nucleiL-. ( 152Sm ) .
The results obtained confirm the validity of this method in calculating the o - values .
The present results are in good agreement with those of the experimental results, ref.( I ,2) , and of theoretical results using interaction boson model (IBM-I) ,ref. (5).
In this study, gamma ray transmission method have been used to determine the total porosity in four samples: pure Alumina ( Al2O3 ), Al2O3 + (0.2wt%)MgO , Al2O3 + (0.6wt% )Y2O3 and Al2O3+ (8wt% ) ZrO2 .
The experimental setup for the gamma ray transmission consist of 137Cs gamma source ( 662 KeV ), a NaI (Tl) scintillation detector measured the attenuation of strongly collimated gamma beam through alumina samples.
The porosity obtained by the gamma ray transmission method were compare
... Show More