Carbon monoxide (CO) plays an important indirect greenhouse gases due to its influences on the budgets of hydroxyl radicals (OH) and Ozone (O3). The atmospheric carbon monoxide (CO) observations can only be made on global and continental scales by remote sensing instruments situated in space. One of instrument is the Measurements of Pollution in the Troposphere (MOPITT), which is designed to measure troposphere CO and CH4 by use of a nadir-viewing geometry and was launched aboard the Earth Observing System (EOS) Terra spacecraft on 18 December 1999. Results from the analysis of the retrieved monthly (1ºх1º) spatial grid resolution, from the MOPITT data were utilized to analyze the distribution of CO surface mixing ratio in Iraq for the year 2010. The analysis shows the seasonal variations in the CO surface fluctuate considerably observed between winter and summer. The mean and the standard deviation of monthly CO was (172.076 ± 62.026 ppbv) for the entire study period. The CO value in winter was higher than its values in summer season and its values over Industrial and congested urban zones higher than its values in the rest of regions throughout the year. Maximum values occurred in the northern region (234.105 ppbv) on February at Erbil, were attributed to the increased human activity, geographic nature of the areas and climatic variations. The elevation of CO values on the south-eastern region during the June - November period was due to the emissions from the oil extraction and the burning of agricultural residues in the paddy fields. A greater draws down of the CO occurs over pristine desert environment in the western region (110.047 ppbv) on July at Al Anbar (41.5°log. × 32.5°lat.). The monthly CO surface VMR maps for 2010 were generated using kriging algorithm technique. The MOPITT data and the Satellite measurements are able to measure the increase of the atmosphere CO concentrations over different regions.
Hiding secret information in the image is a challenging and painstaking task in computer security and steganography system. Certainly, the absolute intricacy of attacks to security system makes it more attractive.in this research on steganography system involving information hiding,Huffman codding used to compress the secret code before embedding which provide high capacity and some security. Fibonacci decomposition used to represent the pixels in the cover image, which increase the robustness of the system. One byte used for mapping all the pixels properties. This makes the PSNR of the system higher due to random distribution of embedded bits. Finally, three kinds of evaluation are applied such as PSNR, chi-square attack, a
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreThis paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
The fact that the signature is widely used as a means of personal verification
emphasizes the need for an automatic verification system. Verification can be
performed either Offline or Online based on the application. Offline systems work on
the scanned image of a signature. In this paper an Offline Verification of handwritten
signatures which use set of simple shape based geometric features. The features used
are Mean, Occupancy Ratio, Normalized Area, Center of Gravity, Pixel density,
Standard Deviation and the Density Ratio. Before extracting the features,
preprocessing of a scanned image is necessary to isolate the signature part and to
remove any spurious noise present. Features Extracted for whole signature
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
With the development of high-speed network technologies, there has been a recent rise in the transfer of significant amounts of sensitive data across the Internet and other open channels. The data will be encrypted using the same key for both Triple Data Encryption Standard (TDES) and Advanced Encryption Standard (AES), with block cipher modes called cipher Block Chaining (CBC) and Electronic CodeBook (ECB). Block ciphers are often used for secure data storage in fixed hard drives, portable devices, and safe network data transport. Therefore, to assess the security of the encryption method, it is necessary to become familiar with and evaluate the algorithms of cryptographic systems. Block cipher users need to be sure that the ciphers the
... Show MoreFar infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in
... Show MoreThis work presents an approach for the applying Triple DES (TRIPLE DES) based on using genetic algorithm by adding intelligent feature for TRIPLE DES with N round for genetic algorithm. Encapsulated cipher file with special program which send an acknowledgment to a sender to know who decipher or broken to crash it , Thus it is considered as the initial step to improve privacy. The outcome for proposed system gives a good indication that it is a promising system compared with other type of cipher system.
Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More