In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
In this work, the notion is defined by using and some properties of this set are studied also, and Ù€ set are two concepts that are defined by using ; many examples have been cited to indicate that the reverse of the propositions and remarks is not achieved. In addition, new application example of nano was studied.
In this paper, we introduce the bi-normality set, denoted by , which is an extension of the normality set, denoted by for any operators in the Banach algebra . Furthermore, we show some interesting properties and remarkable results. Finally, we prove that it is not invariant via some transpose linear operators.
Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite prope
... Show MoreIn this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, Hom(M N ,M ) 0 for all N ≤e M (resp. N ≤ M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f End (M) R , Kerf ≤ e M implies f = 0 (resp. f 0 implies ker f 0 ).
The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
In this paper, a modified three-step iteration algorithm for approximating a joint fixed point of non-expansive and contraction mapping is studied. Under appropriate conditions, several strong convergence theorems and Δ-convergence theorems are established in a complete CAT (0) space. a numerical example is introduced to show that this modified iteration algorithm is faster than other iteration algorithms. Finally, we prove that the modified iteration algorithm is stable. Therefore these results are extended and improved to a novel results that are stated by other researchers. Our results are also complement to many well-known theorems in the literature. This type of research can be played a vital role in computer programming
... Show MoreIn this paper we prove that the planar self-assembling micelle system
has no Liouvillian, polynomial and Darboux first integrals. Moreover, we show that the system
has only one irreducible Darboux polynomial with the cofactor being if and only if via the weight homogeneous polynomials and only two irreducible exponential factors and with cofactors and respectively with be the unique Darbox invariant of system.
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
It was known that every left (?,?) -derivation is a Jordan left (?,?) – derivation on ?-prime rings but the converse need not be true. In this paper we give conditions to the converse to be true.
The current research aims to identify the impact of ambidextrous leadership behaviors on organizational energy in Al-Faris Company. The descriptive analytical method was used as a research approach. Adept leadership includes two dimensions (open leadership behaviors and closed leadership behaviors), and organizational energy includes three dimensions (emotional energy, physical energy, and cognitive energy ). The research sample included all the administrative leaders (General Manager, Associate General manager, Department Manager, Division Official ) in AL-Faris Company / the Iraqi Ministry of Industry. The researcher distributed (74) valid questionna
... Show More