In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
The concept of semi-essential semimodule has been studied by many researchers.
In this paper, we will develop these results by setting appropriate conditions, and defining new properties, relating to our concept, for example (fully prime semimodule, fully essential semimodule and semi-complement subsemimodule) such that: if for each subsemimodule of -semimodule is prime, then is fully prime. If every semi-essential subsemimodule of -semimodule is essential then is fully essential. Finally, a prime subsemimodule of is called semi-relative intersection complement (briefly, semi-complement) of subsemimodule in , if , and whenever with is a prime subsemimodule in , , then . Furthermore, some res
... Show MoreLet be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
Let be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.
The main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
New types of modules named Fully Small Dual Stable Modules and Principally Small Dual Stable are studied and investigated. Both concepts are generalizations of Fully Dual Stable Modules and Principally Dual Stable Modules respectively. Our new concepts coincide when the module is Small Quasi-Projective, and by considering other kind of conditions. Characterizations and relations of these concepts and the concept of Small Duo Modules are investigated, where every fully small dual stable R-module M is small duo and the same for principally small dual stable.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
In this article, we introduce a class of modules that is analogous of generalized extending modules. First we define a module M to be a generalized ECS if and only if for each ec-closed submodule A of M, there exists a direct summand D of M such that is singular, and then we locate generalized ECS between the other extending generalizations. After that we present some of characterizations of generalized ECS condition. Finally, we show that the direct sum of a generalized ECS need not be generalized ECS and deal with decompositions for be generalized ECS concept.
In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the rel
... Show More