The principal goal guiding any designed encryption algorithm must be security against unauthorized attackers. Within the last decade, there has been a vast increase in the communication of digital computer data in both the private and public sectors. Much of this information has a significant value; therefore it does require the protection by design strength algorithm to cipher it. This algorithm defines the mathematical steps required to transform data into a cryptographic cipher and also to transform the cipher back to the original form. The Performance and security level is the main characteristics that differentiate one encryption algorithm from another. In this paper suggested a new technique to enhance the performance of the Data Encryption Standard (DES) algorithm by generate the key of this algorithm from random bitmaps images depending on the increasing of the randomness of the pixel colour, which lead to generate a (clipped) key has a very high randomness according to the know randomness tests and adds a new level of protection strength and more robustness against breaking methods.
Groupwise non-rigid image alignment is a difficult non-linear optimization problem involving many parameters and often large datasets. Previous methods have explored various metrics and optimization strategies. Good results have been previously achieved with simple metrics, requiring complex optimization, often with many unintuitive parameters that require careful tuning for each dataset. In this chapter, the problem is restructured to use a simpler, iterative optimization algorithm, with very few free parameters. The warps are refined using an iterative Levenberg-Marquardt minimization to the mean, based on updating the locations of a small number of points and incorporating a stiffness constraint. This optimization approach is eff
... Show MorePavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.
The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.
The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.
In our work PSNR is used as a measure of accuracy performanc
... Show MoreAs usage of internet grows in different applications around the world, many techniques were developed to guard an important data against from illegal access and modification from unauthorized users by embedding this data into visual media called host media. Audio hiding in an image is a challenge because of the large size of the audio signal. Some previous methods have been presented to reduce the data of the audio signal before embedding it in the cover image, however, these methods was at the cost of reducing the quality of the audio signal. In this paper, a Slantlet transform (SLT) based method is applied to obtain better performance in terms of audio quality. In addition, the data hiding scheme in the cover color image has been imple
... Show More