In this paper, the series solution for unsteady flow for an incompressible viscous electrically conducting fluid of second grad over a stretching sheet subject to a transverse magnetic field is presented by using homotopy analysis method (HAM). Also we examines the effects of viscoelastic parameter, magnetic parameter and time which they control the equation of motion.
In this paper, we present a Branch and Bound (B&B) algorithm of scheduling (n) jobs on a single machine to minimize the sum total completion time, total tardiness, total earliness, number of tardy jobs and total late work with unequal release dates. We proposed six heuristic methods for account upper bound. Also to obtain lower bound (LB) to this problem we modified a (LB) select from literature, with (Moore algorithm and Lawler's algorithm). And some dominance rules were suggested. Also, two special cases were derived. Computational experience showed the proposed (B&B) algorithm was effective in solving problems with up to (16) jobs, also the upper bounds and the lower bound were effective in restr
... Show MoreIn this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThe majority of systems dealing with natural language processing (NLP) and artificial intelligence (AI) can assist in making automated and automatically-supported decisions. However, these systems may face challenges and difficulties or find it confusing to identify the required information (characterization) for eliciting a decision by extracting or summarizing relevant information from large text documents or colossal content. When obtaining these documents online, for instance from social networking or social media, these sites undergo a remarkable increase in the textual content. The main objective of the present study is to conduct a survey and show the latest developments about the implementation of text-mining techniqu
... Show MoreIn this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.
We consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreIn this paper, one of the Machine Scheduling Problems is studied, which is the problem of scheduling a number of products (n-jobs) on one (single) machine with the multi-criteria objective function. These functions are (completion time, the tardiness, the earliness, and the late work) which formulated as . The branch and bound (BAB) method are used as the main method for solving the problem, where four upper bounds and one lower bound are proposed and a number of dominance rules are considered to reduce the number of branches in the search tree. The genetic algorithm (GA) and the particle swarm optimization (PSO) are used to obtain two of the upper bounds. The computational results are calculated by coding (progr
... Show MoreThis paper deals with the continuous classical optimal control problem for triple partial differential equations of parabolic type with initial and boundary conditions; the Galerkin method is used to prove the existence and uniqueness theorem of the state vector solution for given continuous classical control vector. The proof of the existence theorem of a continuous classical optimal control vector associated with the triple linear partial differential equations of parabolic type is given. The derivation of the Fréchet derivative for the cost function is obtained. At the end, the theorem of the necessary conditions for optimality of this problem is stated and is proved.
Computer theoretical study has been carried out on the design of five electrode immersion electrostatic lens used in electron gun application. The finite element method (FEM) is used in the solution of the Poisson's equation fro determine axial potential distribution, the electron trajectory under Zero magnification condition . The optical properties : focal length ,spherical and chromatic aberrations are calculated,From studying the properties of the designed electron gun. we have good futures for these electron gun where are abeam current 4*10-4A can be supplied by using cathode tip of radius 100 nm.