In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the second term gives the non-Newtonian contributions to the general solutions. The similar solutions for second grad, Maxwell and Oldroyd-B fluids with fractional derivatives, as well as, those for the ordinary models are obtained as the limiting cases of our solutions. Moreover, in the special cases when 1==βα . While the
MATHEMATICA package is used to draw the figures velocity components in the
plane.
In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show MoreIn this paper, the effect of thermal radiation and magnetic field on the boundary layer flow and heat transfer of a viscous fluid due to an exponentially stretching sheet is proposed. The governing boundary layer equations are reduced to a system of ordinary differential equations. The homotopy analysis method (HAM) is employed to solve the velocity and temperature equations.
The heat transfer and flow resistance characteristics for air flow cross over circular finned tube heat exchanger has been studied numerically and experimentally. The purpose of the study was to improve the heat transfer characteristics of an annular finned-tube heat exchanger for better performance. The study has concentrated on the effect of the number of perforations and perforations shapes on the heat transfer and pressure drop across a staggered finned tube heat exchanger. The Numerical part of present study has been performed using ANSYS Fluent 14.5 using SST Turbulent model, while the experimental study consist from a test rig with different models of heat exchangers and all required measurement devices were build
... Show MoreThis paper discusses Ree–Eyring fluid’s peristaltic transport in a rotating frame and examines the impacts of Magnetohydrodynamics (MHD). The results deal with systematically (analytically) applying each of the governing equations of Ree–Eyring fluid, the axial and secondary velocities, flow rate due to auxiliary stream, and bolus. The effects of some distinctive variables, such as Hartman number, heat source/sink, and amplitude ratio, are taken under consideration and illustrated through graphs.
This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results are shown through numerical examples.
Abstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A
... Show MoreThe aim of this research is to find out the influence of Daniel's model on the skills of the twenty-first century among the students of the scientific-fifth grade at the secondary and preparatory government morning schools for the academic year 2022- 2023. Two groups were chosen out of five groups for the fifth-scientific grade, one of which represents the experimental group that is taught by the Daniel model, and the other is the control group that is taught in the traditional method. The equivalence of the two research groups was verified with a set of variables. As for the research tool, a scale was developed by the researchers for the skills of the twenty-first century, in which they adopted the framework of the Partnership Organizat
... Show MoreThe aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of
... Show MoreThis study has contributed to understanding a delayed prey-predator system involving cannibalism. The system is assumed to use the Holling type II functional response to describe the consuming process and incorporates the predator’s refuge against the cannibalism process. The characteristics of the solution are discussed. All potential equilibrium points have been identified. All equilibrium points’ local stability analyses for all time delay values are investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. The center manifold and normal form theorems for functional differential equations are then used to establish the direction of Hopf bifurcation and the stability of the per
... Show More