Let R be an associative ring with identity. An R-module M is called generalized
amply cofinitely supplemented module if every cofinite submodule of M has an
ample generalized supplement in M. In this paper we proved some new results about
this conc- ept.
Background: Lumbar spinal canal stenosis (LSCS) is a disorder that causes neurologic deficit, pain and disability. It is common in the elderly, and increasingly encountered as the population ages. Because other causes of back pain are common and difficult to prove, it is possible that mechanical backache, in conjunction with coincident neuropathy or other unrelated leg complaint, might lead to inappropriate treatment including surgery. Thus, accurate diagnosis of the clinical syndrome of spinal stenosis using paraspinal mapping technique may be of critical importance.
Objectives: Asses the utility of paraspinal mapping technique in detecting the level of lumbar radiculopathies in patients with lumbar spinal canal stenosis.
Subjects
Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MorePartial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column
... Show MoreIn this work, we prove by employing mapping Cone that the sequence and the subsequence of the characteristic-zero are exact and subcomplex respectively in the case of partition (6,6,4) .
Our aim in this paper is to introduce the notation of nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule of an -module is called nearly primary-2-absorbing submodule if whenever , for , , , implies that either or or . We got many basic, properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules were inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under -epimorphism was studied.
In this paper, the terms of Lascoux and boundary maps for the skew-partition (11,7,5) / (1,1,1) are found by using the Jacobi-Trudi matrix of partition. Further, Lascoux resolution is studied by using a mapping Cone without depending on the characteristic-free resolution of the Weyl module for the same skew-partition.
In this paper, the complex of Lascoux in the case of partition (3,3,2) has been studied by using diagrams ,divided power of the place polarization ) (k ij ,Capelli identites and the idea of mapping Cone .
The main aim of this paper is to study the application of Weyl module resolution in the case of two rows, which will be specified in the skew- partition (6, 6)/(1,1) and (6,6)/(1,0), by using the homological Weyl (i.e. the contracting homotopy and place polarization).
The aim of this work is to survey the two rows resolution of Weyl module and locate the terms and the exactness of the Weyl Resolution in the case of skew-shape (8,6)/(2,1).