The main goal of this paper is to make link between the subjects of projective
geometry, vector space and linear codes. The properties of codes and some examples
are shown. Furthermore, we will give some information about the geometrical
structure of the arcs. All these arcs are give rise to an error-correcting code that
corrects the maximum possible number of errors for its length.
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
In this work, we construct and classify the projectively distinct (k,3)-arcs in PG(2,9), where k ≥ 5, and prove that the complete (k,3)-arcs do not exist, where 5 ≤ k ≤ 13. We found that the maximum complete (k,3)-arc in PG(2,q) is the (16,3)-arc and the minimum complete (k,3)-arc in PG(2,q) is the (14,3)-arc. Moreover, we found the complete (k,3)-arcs between them.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Our aim in this work is to investigate prime submodules and prove some properties of them. We study the relations between prime submodules of a given module and the extension of prime submodules. The relations between prime submodules of two given modules and the prime submodules in the direct product of their quotient module are studied and investigated.
Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as we discuss the relation between this concept and some other related concepts.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.
Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that
Let R be an associative ring with identity and let M be right R-module M is called μ-semi hollow module if every finitely generated submodule of M is μ-small submodule of M The purpose of this paper is to give some properties of μ-semi hollow module. Also, we gives conditions under, which the direct sum of μ-semi hollow modules is μ-semi hollow. An R-module is said has a projective μ-cover if there exists an epimorphism