To study the striking perturbations of ionospheric Total Electron Content (TEC) before, during, and after the earthquake (M≥5) for earlier prediction to avoid calamities, ionospheric TEC data are taken by using red shift technique from two-frequencies GPS signals.. Tohoku earthquake on 11th March 2011 is chosen as case of our study (A magnitude M9.0 earthquake reported by the US Geological Survey gives its origin time at 05:46:23 UTC; the epicenter was located at 38.322oN, 142.369oE of the east coast of Honshu). The study was made 15 days before and 15 days after earthquake occurred over Japan at four different geographic positions, Kokubunji (35.7oN, 139.5oE), Wakkanai (45.2oN, 141.8oE), Yamagawa (31.2oN, 130.6oE) and Okinawa (26.7oN, 128.2oE). Observations TEC values compared with predicted TEC values by using the International Reference Ionosphere (IRI 2007) model to study the accuracy of model during the earthquake. Finally absolute error calculated between observed TEC (Obs.) values and predicted (Pre.) values before and after correction for 24 hours, which is reveals fewer errors after correction.
Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
Record, verify, and showcase your peer review contributions in a format you can include in job and funding applications (without breaking reviewer anonymity).
The aim of this work is to study the correlation between the electrons for Li atom in ground state through the calculation of the inter-particle distribution function f (r12) and inter-particle expectation values . By using the f(r12) function for KL shell in both singlet and triplet state .The Fermi hole have been evaluated .In this work the Hartree-Fock wave function (1993) have been used.
Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance
The brief description to the theory of propagation of electromagnetic waves in plasma was done. The cutoff and resonance regions have been showed. The principles of plasma heating at electron cyclotron resonance (ECRH) method have been mentioned. The numerical simulation to three different station: Tosca station in United Kingdom, ISX-B station in USA and T-10 station in Russia had been done. The optical depth and the friction of energy absorbed A have been calculated. The simulation results indicate that both and A are increase with size of the tokamak and it is possible to obtain full absorption in large tokamak.
The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these ca
... Show More