Our active aim in this paper is to prove the following Let Ŕ be a ring having an
idempotent element e(e 0,e 1) . Suppose that R is a subring of Ŕ which
satisfies:
(i) eR R and Re R .
(ii) xR 0 implies x 0 .
(iii ) eRx 0 implies x 0( and hence Rx 0 implies x 0) .
(iv) exeR(1 e) 0 implies exe 0 .
If D is a derivable map of R satisfying D(R ) R ;i, j 1,2. ij ij Then D is
additive. This extend Daif's result to the case R need not contain any non-zero
idempotent element.
In this paper extensive examples and related counterexamples of the category of -skew -Armendariz rings are given. This category of rings regards a new generalization for the concepts of -skew Armendariz and skew -Armendariz rings. A ring is called -skew -Armendariz if for any ( ) Σ and ( ) Σ such that ( ) ( ) ( ), then ( ) ( ) for each and . First some general properties of -skew -Armendariz rings are studied and then relations between -skew -Armendariz rings and other related rings are investigated. Also various examples of non -skew -Armendariz rings are established.
This paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple ring. An module is called fully idempotent (semisimple , regular) if for all submodule of (every submodule is a direct summand, for each , there exists and such that . We study some properties and relationships between them.
In this paper, we study the concepts of generalized reverse derivation, Jordan
generalized reverse derivation and Jordan generalized triple reverse derivation on -
ring M. The aim of this paper is to prove that every Jordan generalized reverse
derivation of -ring M is generalized reverse derivation of M.
In this paper we investigated some new properties of π-Armendariz rings and studied the relationships between π-Armendariz rings and central Armendariz rings, nil-Armendariz rings, semicommutative rings, skew Armendariz rings, α-compatible rings and others. We proved that if R is a central Armendariz, then R is π-Armendariz ring. Also we explained how skew Armendariz rings can be ?-Armendariz, for that we proved that if R is a skew Armendariz π-compatible ring, then R is π-Armendariz. Examples are given to illustrate the relations between concepts.
In this work we present the concepts of topological Γ-ring, norm of topological Γ-ring, homomorphism, kernel of topological Γ-ring and compact topological Γ-ring
Let R be a commutative ring with unity .M an R-Module. M is called coprime module (dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In this paper we study coprime modules we give many basic properties of this concept. Also we give many characterization of it under certain of module.
In this paper, we introduce and study the notion of the maximal ideal graph of a commutative ring with identity. Let R be a commutative ring with identity. The maximal ideal graph of R, denoted by MG(R), is the undirected graph with vertex set, the set of non-trivial ideals of R, where two vertices I1 and I2 are adjacent if I1 I2 and I1+I2 is a maximal ideal of R. We explore some of the properties and characterizations of the graph.
Let R be a commutative ring with 1 and M be a (left) unitary R – module. This essay gives generalizations for the notions prime module and some concepts related to it. We termed an R – module M as semi-essentially prime if annR (M) = annR (N) for every non-zero semi-essential submodules N of M. Given some of their advantages characterizations and examples, and we study the relation between these and some classes of modules.