Preferred Language
Articles
/
ijs-1203
Mixed Implicit Galerkin – Frank Wolf, Gradient and Gradient Projection Methods for Solving Classical Optimal Control Problem Governed by Variable Coefficients, Linear Hyperbolic, Boundary Value Problem

This paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adjoint weak form (discrete adjoint) with the Gradient Projection method (GPM) , the Gradient method (GM), or the Frank Wolfe method (FWM) to the DCOCP. Within each of these three methods, the Armijo step option (ARSO) or the optimal step option (OPSO) is used to improve (to accelerate the step) the solution of the discrete classical control problem. Finally, some illustrative numerical examples for the considered discrete control problem are provided. The results show that the GPM with ARSO method is better than GM or FWM with ARSO methods. On the other hand, the results show that the GPM and GM with OPSO methods are better than the FWM with the OPSO method.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

Crossref
View Publication Preview PDF
Publication Date
Sun Dec 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Hydrodynamic Pressure Gradient Correlation of Some Iraqi Oil Wells

Empirical equation has been presented to predict the optimum hydrodynamic
pressure gradient with optimum mud flow rate (one equation) of five Iraqi oil wells
to obtain the optimum carrying capacity of the drilling fluid ( optimum transport
cuttings from the hole to the surface through the annulus).
This equation is a function of mud flow rate, mud density and penetration
rate without using any charts or graphs.
The correlation coefficient accuracy is more than 0.9999.

View Publication Preview PDF
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Publication Date
Wed Apr 29 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Alternating Directions Implicit Method for Solving Homogeneous Heat Diffusion Equation

     An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .

Crossref
View Publication Preview PDF
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
Crossref
View Publication
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
The Best Efficient Solutions for Multi-Criteria Travelling Salesman Problem Using Local Search Methods

     In this research, we propose to use two local search methods (LSM's); Particle Swarm Optimization (PSO) and the Bees Algorithm (BA) to solve Multi-Criteria Travelling Salesman Problem (MCTSP) to obtain the best efficient solutions. The generating process of the population of the proposed LSM's may be randomly obtained or by adding some initial solutions obtained from some efficient heuristic methods. The obtained solutions of the PSO and BA are compared with the solutions of the exact methods (complete enumeration and branch and bound methods) and some heuristic methods. The results proved the efficiency of PSO and BA methods for a large number of nodes ( ). The proposed LSM's give the best efficient solutions for the MCTSP for

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

Crossref
View Publication Preview PDF
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
SIMULATION OF OPTIMAL SPEED CONTROL FOR A DC MOTOR USING LINEAR QUADRATIC REGULATOR (LQR)


This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.

Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Solving Flexible Job Shop Scheduling Problem Using Meerkat Clan Algorithm

Meerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Exponentially Fitted Diagonally Implicit EDITRK Method for Solving ODEs

This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions  and  for exponentially fitting  problems, with  being the problem’s major frequency utilized to improve the precision of the method. The modified  method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a  framework of equations that can be sol

... Show More
Crossref
View Publication Preview PDF