In this work, SnO2 and (SnO2)1-x(ZnO)x composite thin films with different ZnO atomic ratios (x=0, 5, 10, 15 and 20%) were prepared by pulsed laser deposition technique on clean glass substrates at room temperature without any treatment. The deposited thin films were characterized by x-ray diffraction atomic force microscope and UV-visible spectrophotometer to study the effect of the ZnO atomic ratio on their structural, morphological and optical properties. It was found that the crystallinety and the crystalline size vary according to ZnO atomic ratio. The surface appeared as longitudinal structures which was convert to spherical shapes with increasing ZnO atomic ratio. The optical transmission and energy gap increased with increasing ZnO atomic ratio.
The palm vein recognition is one of the biometric systems that use for identification and verification processes since each person have unique characteristics for the veins. In this paper we can improvement palm vein recognition system have been made. The system based on centerline extraction of veins, and employs the concept of Difference-of Gaussian (DoG) Function to construct features vector. The tests results on our database showed that the identification rate is 100 % with the minimum error rate was 0.333.
Background : Knee flexors tightness has been documented in apparently healthy adults and in those with musculoskeletal problems, but the influence of age on the tightness has not been studied in Iraq. This study was therefore designed to determine the influence of age on knee flexors tightness in apparently healthy subjects.Methods: Knee flexors tightness was measured using the active knee extension test (AKET) in 200 apparently healthy male and female subjects, aged 13 to 59 years. The subjects were recruited into 5 age groups using the purposive sampling technique.Knee flexors tightness was compared across the age groups using one-way analysis ofvariance (ANOVA). The independent t-test was used to compare knee flexors tightness on both
... Show MoreIn this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
In this paper we study the concepts of δ-small M-projective module and δ-small M-pseudo projective Modules as a generalization of M-projective module and M-Pseudo Projective respectively and give some results.
Let m ≥ 1,n ≥ 1 be fixed integers and let R be a prime ring with char (R) ≠2 and
(m+n). Let T be a (m,n)(U,R)-Centralizer where U is a Jordan ideal of R and T(R)
⊆ Z(R) where Z(R) is the center of R ,then T is (U,R)- Centralizer.
The general objective of surface shape descriptors techniques is to categorize several surface shapes from collection data. Gaussian (K) and Mean (H) curvatures are the most broadly utilized indicators for surface shape characterization in collection image analysis. This paper explains the details of some descriptions (K and H), The discriminating power of 3D descriptors taken away from 3D surfaces (faces) is analyzed and present the experiment results of applying these descriptions on 3D face (with polygon mesh and point cloud representations). The results shows that Gaussian and Mean curvatures are important to discover unique points on the 3d surface (face) and the experiment result shows that these curvatures are very useful for some
... Show MoreDespite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
Long before the pandemic, labour force all over the world was facing the quest of incertitude, which is normal and inherent of the market, but the extent of this quest was shaped by the pace of acceleration of technological progress, which became exponential in the last ten years, from 2010 to 2020. Robotic process automation, work remote, computer science, electronic and communications, mechanical engineering, information technology digitalisation o public administration and so one are ones of the pillars of the future of work. Some authors even stated that without robotic process automation (RPA) included in technological processes, companies will not be able to sustain a competitive level on the market (Madakan et al, 2018). R
... Show MoreThis article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition