Densely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a simple disk sensing model, this paper addresses the problem of scheduling the minimum number of sensors (i.e., finding the minimum set cover) while considering a more realistic sensing model to handle uncertainty into the sensors' target-coverage reliability. The paper investigates the development of a genetic algorithm (GA) whose main ingredient is to maintain scheduling of a minimum number of sensors and thus to support energy-efficient WSNs. With the aid of the remaining unassigned sensors, the reliability of the generated set cover provided by the GA, can further be enhanced by a post-heuristic step. Performance evaluations on solution quality in terms of both sensor cost and coverage reliability are measured through extensive simulations, showing the impact of number of targets, sensor density and sensing radius.
Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval ( are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi
... Show MoreDue to the large-scale development in satellite and network communication technologies, there is a significant demand for preserving the secure storage and transmission of the data over the internet and shared network environments. New challenges appeared that are related to the protection of critical and sensitive data
from illegal usage and unauthorized access. In this paper, we address the issues described above and develop new techniques to eliminate the associated problems. To achieve this, we propose a design of a new sensor node for tracking the location of cars and collecting all information and all visited locations by cars, followed by
encryption in a sensor node and saving in the database. A microcontroller of Arduino es
This paper investigated an Iraqi dataset from Korek Telecom Company as Call Detail Recorded (CDRs) for six months falling between Sep. 2020-Feb. 2021. This data covers 18 governorates, and it falls within the period of COVID-19. The Gravity algorithm was applied into two levels of abstraction in deriving the results as the macroscopic and mesoscopic levels respectively. The goal of this study was to reveal the strength and weakness of people migration in-between the Iraqi cities. Thus, it has been clear that the relationship between each city with the others is based on and of mobile people. However, the COVID-19 effects on the people’s migration needed to be explored. Whereas the main function of the gravity model is to
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show More<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
The majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show More<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive numbe
... Show More