Preferred Language
Articles
/
ijs-11947
A Genetic Algorithm for Minimum Set Covering Problem in Reliable and Efficient Wireless Sensor Networks
...Show More Authors

Densely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a simple disk sensing model, this paper addresses the problem of scheduling the minimum number of sensors (i.e., finding the minimum set cover) while considering a more realistic sensing model to handle uncertainty into the sensors' target-coverage reliability. The paper investigates the development of a genetic algorithm (GA) whose main ingredient is to maintain scheduling of a minimum number of sensors and thus to support energy-efficient WSNs. With the aid of the remaining unassigned sensors, the reliability of the generated set cover provided by the GA, can further be enhanced by a post-heuristic step. Performance evaluations on solution quality in terms of both sensor cost and coverage reliability are measured through extensive simulations, showing the impact of number of targets, sensor density and sensing radius.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jul 02 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement for Wireless Sensor Networks
...Show More Authors

In this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An Improved Cuckoo Search Algorithm for Maximizing the Coverage Range of Wireless Sensor Networks
...Show More Authors

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At first, the iteration is carried out by updating the old solution dimension by dimension to achieve independent updating across the dimensions in the high-dimensional optimization problem. The PSO operator is then incorporated to lessen the preference random walk stage's imbalance between exploration and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize coverage in WSN by converting r

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Lightweight route adjustment strategy for mobile sink wireless sensor networks
...Show More Authors

<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
An Energy-Aware and Load-balancing Routing scheme for Wireless Sensor Networks
...Show More Authors

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (11)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Wireless And Ad Hoc Communication
Energy Aware Scheme for Underwater Wireless Sensor Networks
...Show More Authors

The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Wireless And Ad Hoc Communication
Energy Aware Scheme for Underwater Wireless Sensor Networks
...Show More Authors

The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifesp

... Show More
Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
A Genetic Algorithm for Task Allocation Problem in the Internet of Things
...Show More Authors

In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical de

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (4)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks
...Show More Authors

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the

... Show More
View Publication Preview PDF
Scopus (45)
Crossref (35)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2012
Journal Name
Applied Soft Computing
A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks
...Show More Authors

Scopus (240)
Crossref (198)
Scopus Clarivate Crossref