In this paper, a four species mathematical models involving different types of ecological interactions is proposed and analyzed. Holling type – II functional response is a doubted to describes the behavior of predation. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. suitable Lyapunov functions are used to study the global dynamics of the system. Numerical simulations are also carried out to investigate the influence of certain parameters on the dynamical behavior of the model, to support the analytical results of the model.
The aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of
... Show MoreThis article suggests and explores a three-species food chain model that includes fear effects, refuges depending on predators, and cannibalism at the second level. The Holling type II functional response determines food consumption between stages of the food chain. This study examined the long-term behavior and impacts of the suggested model's essential elements. The model's solution properties were studied. The existence and stability of every probable equilibrium point were examined. The persistence needs of the system have been determined. It was discovered what conditions could lead to local bifurcation at equilibrium points. Appropriate Lyapunov functions are utilized to investigate the overall dynamics of the system. To support the a
... Show MoreThis study was carried out on two species of the Hygromiidae family Monacha
cantiana and Candidula gigaxii collected from six sites in three central Iraq
provinces (Baghdad , Babylon and Karbala) . A total of 1318 individuals of Monacha
cantiana and 173 of Candidula gigaxii have been examined during the study period
from October 2013 to July 2014.The study included estimation of species relative
abundance, population density and relationship with some physico- chemical
properties of the soil; temperature, moisture and pH.
The Monacha cantiana was present at all sites but with varying numbers, while
Candidula gigaxii was confined to only three sites: Aljadiriyah and Zafaraniya at
Baghdad, and Hindiya dam at Baby
A modified Leslie-Gower predator-prey model with fear effect and nonlinear harvesting is developed and investigated in this study. The predator is supposed to feed on the prey using Holling type-II functional response. The goal is to see how fear of predation and presence of harvesting affect the model's dynamics. The system's positivity and boundlessness are demonstrated. All conceivable equilibria's existence and stability requirements are established. All sorts of local bifurcation occurrence conditions are presented. Extensive numerical simulations of the proposed model are shown in form of Phase portraits and direction fields. That is to guarantee the correctness of the theoretical results of the dynamic behavior of the system and t
... Show MoreAbstract\
In this research we built a mathematical model of the transportation problem for data of General Company for Grain Under the environment of variable demand ,and situations of incapableness to determining the supply required quantities as a result of economic and commercial reasons, also restrict flow of grain amounts was specified to a known level by the decision makers to ensure that the stock of reserves for emergency situations that face the company from decrease, or non-arrival of the amount of grain to silos , also it took the capabilities of the tanker into consideration and the grain have been restricted to avoid shortages and lack of processing capability, Function has been adopted
... Show MoreGiven that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every one of the solution’s qualitative attributes is included. According to the established basic reproductio
... Show MoreStart your abstract here the objective of this paper is to study the dynamical behaviour of an eco-epidemiological system. A prey-predator model involving infectious disease with refuge for prey population only, the (SI_) infectious disease is transmitted directly, within the prey species from external sources of the environment as well as, through direct contact between susceptible and infected individuals. Linear type of incidence rate is used to describe the transmission of infectious disease. While Holling type II of functional responses are adopted to describe the predation process of the susceptible and infected predator respectively. This model is represented mathematically by