Preferred Language
Articles
/
ijs-11397
A Hybrid Estimation System for Medical Diagnosis using Modified Full Bayesian Classifier and Artificial Bee Colony
...Show More Authors

This paper presents a hybrid approach called Modified Full Bayesian Classifier (M-FBC) and Artificial Bee Colony (MFBC-ABC) for using it to medical diagnosis support system. The datasets are taken from Iraqi hospitals, these are for the heart diseases and the nervous system diseases. The M-FBC is depended on common structure known as naïve Bayes. The structure for network is represented by D-separated for structure's variables. Each variable has Condition Probability Tables (CPTs) and each table for disease has Probability. The ABC is easy technique for implementation, has fewer control parameters and it could be easier than other swarm optimization algorithms, so that hybrid with other algorithms to reach the optimal structure. In the input stage, the symptoms and the medical history for the patient are processed through the BNs structures to obtain from Modified Full Bayesian Classifier- Artificial Bee Colony (MFBC-ABC). The proposed system inputs all medical dataset and it filters and extracts the dataset. After the evaluation of the structures, the system can select the best optimal structure by determining the accepted accuracy. The accuracy for M-FBC model is approximately (93%) for heart diseases and approximately (98%) for nervous system diseases. While in The MFBC-ABC model, the accuracy is approximately (100%) for heart diseases and is approximately (99%) for nervous model diseases. The experimental results shown that the results for MFBC-ABC is better than on M-FBC.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2006
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Modified Automated Scoring system for Immunohistochemical staining using commercially available low cost software for image analysis
...Show More Authors

Background: During the past several years, there has been a rapidly escalating clinical need to perform IHC stains that require quantitative interpretation. Automated Cellular
Imaging System is used to analyze immunohistochemically stained slides, primarily for cancer-related diagnostics. Studies have shown that the device offers accuracy,
precision, and reproducibility of immunostained slide analysis exceeding that possible with manual evaluation, which was the prevailing method.
Aim of the study In this article we will demonstrate that meaningful image analysis of immunohistochemical staining studies can be performed using inexpensive, widely distributed
graphics software (Adobe Photoshop) on a personal

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Parameters Estimation for Modified Weibull Distribution Based on Type One Censored Samplest
...Show More Authors

The three parameters distribution called modified weibull distribution (MWD) was introduced first by Sarhan and Zaindin (2009)[1]. In theis paper, we deal with interval estimation to estimate the parameters of modified weibull distribution based on singly type one censored data, using Maximum likelihood method and fisher information to obtain the estimates of the parameters for modified weibull distribution, after that applying this technique to asset of real data which taken for Leukemia disease in the hospital of central child teaching .

View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
Proposed Hybrid Sparse Adaptive Algorithms for System Identification
...Show More Authors

Abstract 

For sparse system identification,recent suggested algorithms are  -norm Least Mean Square (  -LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named  -ZA-LMS, 

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 22 2020
Journal Name
2020 4th International Symposium On Multidisciplinary Studies And Innovative Technologies (ismsit)
Artificial Intelligence in Smart Agriculture: Modified Evolutionary Optimization Approach for Plant Disease Identification
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 01 2017
Journal Name
2017 5th International Conference On Information And Communication Technology (icoic7)
Analysis of the number of ants in ant colony system algorithm
...Show More Authors

View Publication
Scopus (24)
Crossref (11)
Scopus Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function
...Show More Authors

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Oct 17 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
ESTIMATION OF MUNICIPAL SOLID WASTE GENERATION AND LANDFILL VOLUME GENERATION AND LANDFILL VOLUME USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
A Prediction of Skin Cancer using Mean-Shift Algorithm with Deep Forest Classifier
...Show More Authors

      Skin cancer is the most serious health problems in the globe because of its high occurrence compared to other types of cancer. Melanoma and non-melanoma are the two most common kinds of skin cancer. One of the most difficult problems in medical image processing is the automatic detection of skin cancer. Skin melanoma is classified as either benign or malignant based on the results of this test. Impediment due to artifacts in dermoscopic images impacts the analytic activity and decreases the precision level. In this research work, an automatic technique including segmentation and classification is proposed. Initially, pre-processing technique called DullRazor tool is used for hair removal process and semi-supervised mean-shift

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Sep 03 2012
Journal Name
The International Archives Of The Photogrammetry, Remote Sensing And Spatial Information Sciences
CALIBRATION OF FULL-WAVEFORM ALS DATA BASED ON ROBUST INCIDENCE ANGLE ESTIMATION
...Show More Authors

Abstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration r

... Show More
View Publication
Crossref