Let M be an R-module. In this paper we introduce the concept of quasi-fully cancellation modules as a generalization of fully cancellation modules. We give the basic properties, several characterizations about this concept. Also, the direct sum and the localization of quasi-fully cancellation modules are studied.
In wireless broadband communications using single-carrier interleave division multiple access (SC-IDMA) systems, efficient multiuser detection (MUD) classes that make use of joint hybrid decision feedback equalization (HDFE)/ frequency decision-feedback equalization (FDFE) and interference cancellation (IC) techniques, are proposed in conjunction with channel coding to deal with several users accessing the multipath fading channels. In FDFE-IDMA, the feedforward (FF) and feedback (FB) filtering operations of FDFE, which use to remove intersymbol interference (ISI), are implemented by Fast Fourier Transforms (FFTs), while in HDFE-IDMA the only FF filter is implemented by FFTs. Further, the parameters involved in the FDFE/
... Show MoreAbstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple ring. An module is called fully idempotent (semisimple , regular) if for all submodule of (every submodule is a direct summand, for each , there exists and such that . We study some properties and relationships between them.
Throughout this paper R represents commutative ring with identity, and M is a unitary left R-module. The purpose of this paper is to study a new concept, (up to our knowledge), named a semi-extending modules, as generalization of extending modules, where an Rmodule M is called semi-extending if every sub module of M is a semi-essential in a direct summand of M. Various properties of semi-extending module are considered. Moreover, we investigate the relationships between semi-extending modules and other related concepts, such as CLS-modules and FI- extending modules.
Throughout this paper S will be denote a monoids with zero. In this paper, we introduce the concept of En- prime subact, where a proper subact B of a right S- act As is called En- prime subact if for any endomorphism f of As and a As with f(a)S⊆ Bimplies that either a B or f(As) ⊆ B. The right S-act As is called En-prime if the zero subact of As is En-prime subact. Some various properties of En-prime subact are considered, and also we study some relationships between En-prime subact and some other concepts such as prime subact and maximal subact.
We introduce in this paper the concept of approximaitly semi-prime submodules of unitary left -module over a commutative ring with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule of an -module is called an approximaitly semi-prime submodule of , if whenever , where , and , implies that . Furthermore the behaviors of approximaitly semi-prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are
... Show MoreThe main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
Let R be a commutative ring with 10 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by A.Y. Darani and F. Soheilina . Many new properties and characterizations are given .
Let be a commutative ring with identity, and be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule of an -module is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule of with is a submodule of such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of pseudo weakly closed
... Show More