In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
This paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreThis paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreIn this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
In this paper , certain subclass of harmonic multivalent function defined in the exterior of the unit disk by used generalize hypergeometric functions is introduced . In This study an attempting have been made to investigate several geometric properties such as coefficient property , growth bounds , extreme points , convolution property , and convex linear combination .
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
In this paper we introduce generalized (α, β) derivation on Semirings and extend some results of Oznur Golbasi on prime Semiring. Also, we present some results of commutativity of prime Semiring with these derivation.
Cutaneous leishmaniasis (CL) is one of the most prevalent cutaneous parasitic protozoan infections in Iraq; characterized by a chronic infection and granulomatous disease that invades the skin. Type 1 immune was predominates in CL patients with exacerbated production of pro-inflammatory cytokine, therefore this study aimed to evaluate serum level of interferon gamma (IFN-γ) and monokine induce by interferon gamma (MIG/CXCl9) as a useful markers of disease development in patients during different stage of infection (<1 month .. early , 1-6 month.. chronic and >6 months.. late). The result showed that there was an early effort to eliminate the parasite proliferation which illustrated by a high significant increase of both IFN-γ
... Show MoreIn this research the effect of grain size and effect of La2O3 doping on densification rate for the initial and intermediate stages of sintering were studied .The experimental results for α – cristobilite powder are modeled using ( L2-Regression ) technique in studying the effect of grain size and La2O3 doping using three particles size (6.12, 8.92, 13.6 ) µm, with undoped initial powder and with La2O3 doping . The mathematical simulation showes that the densification rates increase as the initial particles sizes decrease and vice versa. This shows that the densification depends directly on the initial compact density which reflects the contacts area between the particles . How
... Show More