Due to the significant role in understanding cellular processes, the decomposition of Protein-Protein Interaction (PPI) networks into essential building blocks, or complexes, has received much attention for functional bioinformatics research in recent years. One of the well-known bi-clustering descriptors for identifying communities and complexes in complex networks, such as PPI networks, is modularity function. The contribution of this paper is to introduce heuristic optimization models that can collaborate with the modularity function to improve its detection ability. The definitions of the formulated heuristics are based on nodes and different levels of their neighbor properties. The modularity function and the formulated heuristics are then injected into the mechanism of a single objective Evolutionary Algorithm (EA) tailored specifically to tackle the problem, and thus, to identify possible complexes from PPI networks. In the experiments, different overlapping scores are used to evaluate the detection accuracy in both complex and protein levels. According to the evaluation metrics, the results reveal that the introduced heuristics have the ability to harness the accuracy of the existing modularity while identifying protein complexes in the tested PPI networks.
This study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit
... Show MoreBreast carcinoma is one of the greatest popular neoplasms in females. It is a major reason of demise in the world, and it is the first cancer in ranking diagnosed in Iraqi women. This study aimed to determine aminoacyltRAN-synthetase complex interacting multifunctional protein 1 and liver enzymes levels in Iraqi females with stage II breast malignance, and study the effect of chemotherapy (after surgery) on these markers. This study included 50 females patients with stage II breast malignance (before and after surgery and second dose of chemotherapy) attending the Oncology Teaching Hospital in Medical City/ Baghdad, in addition to 20 persons as controller group were chosen without any chronic diseases. Their ages ranged from (30-55) years.
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulated und
... Show MoreInsulin like growth factor-1 has metabolic and growth-related roles all over the body and is strongly associated and regulated by growth hormone. It is produced by almost any type of tissue, especially the liver. The study aimed to measure insulin like growth factor in growth hormone deficient patients and find its relation with other studied parameters. The Subjects in the study were 180 studied in the National Diabetic Center for Treatment and Research/Al-Mustansiriya University in Baghdad/Iraq for the period from November 2021 to April 2022. Blood was drawn and investigated for the levels of IGF-1, IGFBP-3, LH, and FSH. Also testosterone and statistical analysis was carried out to find the potential correlations. The results relived t
... Show MoreBackground: Depression is a state of low mood and aversion to activity, it can affect a person's thoughts, behavior and sense of well-being. It can affect oral health and lead to an increased risk of dental caries. Dental caries is the most common oral infectious diseases that stresses the immune system and causes changes in cellular and molecular components of peripheral blood and C-Reactive Protein is one of these components, considered a key biomarker of inflammation. This study was conducted to assess the effect of depression status on dental caries among 17 years old secondary school female students in relation to salivary C-Reactive Protein. Materials and Methods: A cross sectional study was carried and the whole sample composed of
... Show MoreBackground: Orthodontic force is considered to stimulate cells in the periodontium to release many mediators such as cytokines which play a responsible role for periodontal and alveolar bone remodeling, bone resorption and new bone deposition. Aim of this study was carried out to estimate changes of the (interleukin-one beta, tumor necrosis factor – alpha and C-reactive protein) levels in unstimulated whole saliva during the leveling stage of orthodontic tooth movement. Materials and methods: The sample consisted of thirty adult patients (12 males and 18 females) with ages ranges (19-23) years. Each sample had Class I and Class II malocclusion dental classification and required bilateral extraction of their maxillary first premolars, und
... Show MoreIn this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la
In this paper, we prove that our proposed localization algorithm named Improved
Accuracy Distribution localization for wireless sensor networks (IADLoc) [1] is the
best when it is compared with the other localization algorithms by introducing many
cases of studies. The IADLoc is used to minimize the error rate of localization
without any additional cost and minimum energy consumption and also
decentralized implementation. The IADLoc is a range free and also range based
localization algorithm that uses both type of antenna (directional and omnidirectional)
it allows sensors to determine their location based on the region of
intersection (ROI) when the beacon nodes send the information to the sink node and
the la