The current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) by supplementation of cellulose liquid medium with 1 % of yeast extract as nitrogen source. Additives of carbon sources like (manitol, glucose, maltose, sucrose and starch) to the process of saccharification not improve the cellulose productivity. The bioconversion of cellulosic waste to reducing sugar was maximum with Banana peels (77.78 %) followed by the rice husk (75.56 %), orange peels (71.11 %), corn steep peels (60.0 %) and lowest bioconversions (53.33 %) recorded with sawdust. The degradation of cellulosic waste increases with increasing substrate concentration. Maximum cellulase productivity (3.18 U/ml) and bioconversion (86.1 %) was obtained at 3 % (w/v) of cellulosic waste (Banana peels). Saccharification of cellulosic waste with different treatment methods was studied. The pretreatment of cellulosic waste with 1 % HCl and H2SO4 produces 21 and 15.8 g of reducing sugar / 100 g of cellulosic waste. In comparison, hydrolysis with Streptomyces sp. B 167 enzymes, resulting significantly higher amount of reducing sugar yield (25 g / 100 g cellulotic waste). Further fermentation of cellulosic hydrolysates were preformed using Saccharomyces cerevisiae using stationary fermentation condition, maximum yield of ethanol were ( 0.30, 0.19 and 0.10 g ethanol / g glucose) observed with Streptomyces sp. B 167 enzymes, HCl and H2SO4 hydrolysates respectively after 48 h of fermentation.
This study investigates the digestion of cow dung (CD) for biogas production at laboratory scales. The study was carried out through anaerobic fermentation using cow dung as substrate. The digester was operated at ambient temperatures of 39.5 °C for a period of 10 days. The effect of iron powder in controlling the production of hydrogen sulfide (H2S) has been tested. The optimum concentration of iron powder was 4g/L with the highest biogas production. A Q – swatch Nd:YAG laser has been used to mix and homogenize the components of one of the six digesters and accelerate digestion. At the end of digestion, all digestions effluent was subjected to 5 laser pulses with 250mJ/pules to dispose waste biomass.
In this study, detection of uricase production from Pseudomonas aeruginosa
isolates was done by applying colorimetric method, Uricase was purified from the
most potent isolate by precipitation using ammonium sulphate (80% saturation) then
purification was achieved using DEAE –Cellulose ion exchange and Sepharose 6B
gel filtration chromatography column, 16.4% of total enzyme was recovered with
specific activity 2337.5U/mg and 22.21folds of purification. Characterization of
uricase involved detection of optimal conditions for uricase activity, the maximal
activity was obtained at temperature 45ºC,while uricase appeared to be stable at
40ºC. Uricase showed optimal activity at pH 9 while pH stability was in the
The present study aimed to try to find natural substances stimulate the production of bacteriocin, as well as "for detection of bacteriocin producing isolates. Two hundred and eighty ( 280) bacterial isolates, gram negative only, were collected from 760 different pathogenic samples, consist: (Urinary tract infection, septicemia, Vaginal inflammation and diarrhea). The isolated bacteria are: Escherichia coli, Klebsiella pneumonia Pseudomonas aeruginosa,, Salmonella typhi, Enterobacter cloacae, Acinetobacter baumannii, Serratia liquefaciens, Citrobacter freundii, Proteus mirabilis and Serrattia odorifera. Cup assay method was used to detect bacteriocin production. Loc
... Show MoreResults showed that the optimum conditions for production of inulunase from isolate Kluyveromyces marxianus AY2 by submerged culture could be achieved by using inulin as carbon source at a concentration of 2% with mixture of yeast extract and ammonium sulphate in a ratio of 1:1 in a concentration of 1% at initial pH 5.5 after incubation for 42 hours at 30ºC.
Background:
During 2011, 1900 clinical specimens (urine, wounds, burns, blood and sputum) and
240 hospital environment specimens were collected from four hospitals in
Baghdad/Medical city including: Baghdad Teaching Hospital, The Martyr Gazi Al-
Hariry Hospital, Welfare Teaching Hospital and The Burn Specialist Hospital. All
specimens were cultured and 128 Acinetobacter baumannii were obtained from
clinical and environmental specimens in a ratio of 6.05% (n=115) and 5.42%
(n=13), respectively. These isolates were identified using microscopic examination,
biochemical tests and Api 20 E system.The slide agglutination technique for rabbit
immune sera and A. baumannii bacteria was used and our data analysis revealed a
serologi
The hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
(28)Bacterial local isolates of Bacillus sp. were obtained from soil samples. Isolates were tested for thermostable alpha- amylase production on solid media; fifteen isolates were able to develop clear zone around the bacterial growth after floating the plates with iodine reagent (Lugol's solution). There were further tested in submerged culture which led to selection of Bacillus sp. H14since it was the most efficient .Microbial and biochemical tests showed that the local isolate Bacillus sp.H14was refered to the species B.licheniformis that signed as H14 was refered to the species B.licheniformis H14 .,To get ahigher yield of alpha – amylase(48.70unit/mg protein) production from the local isolate B.licheniformis H14 . This study used
... Show MoreMethicillin resistant Staphylococcus aureus (MRSA) is the most common pathogenic bacteria in the hospitals and communities, the ability to form biofilm is considered the main cause of Staphylococcus pathogenicity since it provides resistance to both antibiotics and host immune response, so this study was aimed to evaluate the biofilms formation and its association with antibiotic resistance in clinical isolates of MRSA, in order to achieve this aim, 237 samples were collected from different patients with wounds infections after surgeries and samples from operations galleries from varies hospitals in Baghdad ,68 isolates out of 237 were subjected to Staphylococcus aureus according to conventional meth
... Show MoreAspergillus flavus isolates which are considered on conidial shape through microscopic examination and mycelial colour through cultural properties . Primary screening for the ability of A. flavus isolates for aflatoxin production was determined using A.flavus parasiticus agar medium (AFPA) as well , 7 isolates from 11 isolates give a positive result by the presence of bright yellow-orange pigments indicated the presence of aflatoxins. Molecular genetics techniques using DNA polymorphism have been increasingly used to characterize and identify genetic diversity and relationships among eleven A. flavus isolated from different source using the ISSR(inter simple sequence repeats) technique. Three universal primers designed at University of B
... Show More