The current study aims to produce cellulase enzyme from Streptomyces spp. isolates and study the effect of some cultural conditions on cellulase production; biofuel production from cellulotic waste through enzymatic and acids hydrolysis. Out of 74 isolates of Streptomyces sp. were screened for cellulse production in solid and liquid media. Results showed higher capability of isolate Streptomyces sp. B 167 for cellulase production and bioconversion of cellulose, therefore selected for further studies. The results of optimization revealed that the cellulase enzyme productivity by the selected isolate reached 2.1 and 2.28 U/ml after 48 h of incubation time and pH 7 respectively. Cellulase productions in tested isolate improved (2.57 U/ml) by supplementation of cellulose liquid medium with 1 % of yeast extract as nitrogen source. Additives of carbon sources like (manitol, glucose, maltose, sucrose and starch) to the process of saccharification not improve the cellulose productivity. The bioconversion of cellulosic waste to reducing sugar was maximum with Banana peels (77.78 %) followed by the rice husk (75.56 %), orange peels (71.11 %), corn steep peels (60.0 %) and lowest bioconversions (53.33 %) recorded with sawdust. The degradation of cellulosic waste increases with increasing substrate concentration. Maximum cellulase productivity (3.18 U/ml) and bioconversion (86.1 %) was obtained at 3 % (w/v) of cellulosic waste (Banana peels). Saccharification of cellulosic waste with different treatment methods was studied. The pretreatment of cellulosic waste with 1 % HCl and H2SO4 produces 21 and 15.8 g of reducing sugar / 100 g of cellulosic waste. In comparison, hydrolysis with Streptomyces sp. B 167 enzymes, resulting significantly higher amount of reducing sugar yield (25 g / 100 g cellulotic waste). Further fermentation of cellulosic hydrolysates were preformed using Saccharomyces cerevisiae using stationary fermentation condition, maximum yield of ethanol were ( 0.30, 0.19 and 0.10 g ethanol / g glucose) observed with Streptomyces sp. B 167 enzymes, HCl and H2SO4 hydrolysates respectively after 48 h of fermentation.
Biologically active natural compounds are molecules produced by plants or plant-related microbes, such as endophytes. Many of these metabolites have a wide range of antimicrobial activities and other pharmaceutical properties. This study aimed to evaluate (in vitro) the antifungal activities of the secondary metabolites obtained from Paecilomyces sp. against the pathogenic fungus Rhizoctonia solani. The endophytic fungus Paecilomyces was isolated from Moringa oleifera leaves and cultured on potato dextrose broth for the production of the fungal metabolites. The activity of Paecilomyces filtrate against the radial growth of Rhizoctonia solani was tested by mixing the filtrate with potato dextrose agar medium at concentrations of 15%,
... Show MoreDiabetic foot is a catastrophic complication of diabetes. This study included isolation and identification of three types of bacteria that cause diabetic foot ulcers, fifty-five isolates of Staphylococcus aureus, thirty-five isolates of Acinetobacter baumannii, and thirty isolates of Serratia marcescens. These isolates were obtained from diabetic foot patients at different private clinics in and around Baghdad and Medical City Hospital. The proportion of male patients was greater than females, and it was noted that the age group (51-68 years) was more ages affected by diabetic foot. These isolates showed high resistance to most of the antibiotics used, Staphylococcus aureus was resistant to
... Show MoreThe main aim of this study is to investigate the ability of four local entomopathogenic isolates Beauveria bassiana (Bals.) and Metarhizium anisopliae (Met.) to control the mosquito larvae in the lab. The results revealed that the isolate (MARD48) B .bassiana reduced the survival rate of the mosquito larvae to (80%) followed by the isolate M. anisopliae (MARD10) to (90%) in the first two days of treatment, and 60 and 66% respectively in the third day. The results also showed that the isolate B. bassiana (MARD48) killed 50% of the population (LC50) with the concentration 1×104 conidia/ml compared to 1×107 conidia/ml for the isolates B. bassiana (MARD14) and M. anisopliae (MARD10), and 1×108 conidia/ml for the isolate B .bassiana (MARD76).
... Show MoreOne hundred and eighty five urine samples were collected eight isolates (4.3%) were obtained and diagnosed as Staphylococcus aureus. Among 8 isolates, 5 (62.5%) S. aureus isolates were found to be enterotoxigenic, most of isolates produced at least two types of Staphylococcal enterotoxins (SEs). The production of enterotoxins in the presence or absence of Thymol extracts (aqueous and alcoholic) were estimated using a reversed passive latex agglutination (SET-RPLA) kit. The extracts reduced enterotoxin production compared with the control. Enterotoxin inhibition was observed for enterotoxin C production at minimal inhibitory concentrations (MIC) at 400 µg/ml, whereas production of enterotoxins A, B, and
... Show MoreFifty isolates of Bacillus spp were obtained from rhizosphere soil of compositae
plant roots. The ability of inulinase production by these isolates was screened.
Bacillus Be9, which isolated from soil of lettuce root, was the highest inulinase
producer; it was identified as Bacillus cereus. Optimal culture medium and
condition for inulinase production were determinatd; the highest inulinase
production was obtained when the bacteria was cultured in inulin medium which
contained 0.5% inulin, 0.4% peptone as carbon and nitrogen source at pH 7.0
inoculated with 1ml of bacterial suspension and incubated at 40˚C for 48hrs.
The world is confronted with the twin crisis of fossil fuel depletion and environmental degradation caused by fossil fuel usage. Biodiesel produced from renewable feedstocks such as Jatropha seed oil or animal fats by transesterification offers a solution. Although biodiesel has been produced from various vegetable oils such as Jatropha seed oil, the reaction kinetics studies are very few in literature, hence the need for this study. Jatropha curcas seed oil was extracted and analyzed to determine its free fatty acid and fatty acid composition. The oil was transesterified with methanol at a molar ratio of methanol to oil 8:1, using 1% sodium hydroxide catalyst, at different temperature
... Show More15 local isolates of Pseudomonas were obtained from 35 samples from several sources such as soil, water and some high-fat foods. The ability of isolates to produce lipase was measured by the size of the clarification zone formed around the colonies on the lipase production medium and by measuring the enzymatic activity and specific enzymatic activity, the isolate M3 was found to be the most efficient for production of the enzyme, This isolate was identified by microscopic, morphological, some biochemical tests and genetic diagnosis of 16S gene sequences by using the (PCR) technique, and then comparing the results obtained with the National Center for Biotechnology Inform
... Show MoreSix isolates of Bacillus thuringiensis were isolated from Iraqi soil characterized as non- insecticidal and non- hemolytic parasporal inclusion proteins. Bacterial isolates were propagated on nutrient broth. Then, the parasporal inclusion proteins were extracted and processed with proteinase K and trypsin. The major protein segments produced of 64KDa were characterized and tested for cytocidal activity against human leukemic T- cells (CLL) (Chronic lymphoid leukemia). Results indicated that the treated parasporal proteins of four isolates (Bt2, Bt3, Bt4 and Bt6) showed strong cytotoxicity with no significant differences between normal lymphocytes and leukemic lymphocytes. Two isolates BtA1 and BtA5 show discriminative cytotoxicity between n
... Show MoreImidacloprid is systemic insecticide (1-[(6-chloro-3-pyridinyl) methyl]-N-nitro-2-imidazolidinimine) and the world’s most widely used has significant efficacy against a broad variety of pests and a unique mode of action by using it spreader and irrigation. The persistence of this pesticide in the soil means that it causes environmental damage that must be cleaned up. In this study collected and identified the best bacteria isolate that breakdown imidacloprid from the Plant Protection Director in Baghdad, which has been using neonicotinoid pesticides for years in their own greenhouse for pest control. Using high-performance liquid chromatography HPLC to measuring the residual concentrations of imidacloprid in MSM media at a concentration o
... Show MorePesticide biodegradation can be accomplished by the technique of bioremediation, which makes use of microorganisms’ ability to degrade pesticide residues. This study aimed to separate and identify imidacloprid-biodegradable from botanical fields soil of greenhouses in the Plant Protection Directorate /Ministry of Agriculture in Baghdad, which has been using imidacloprid pesticides for many years. Using high-performance liquid chromatography, residual imidacloprid concentrations in MSM medium at a concentration of 25 mg/L after 21 days were measured to identify the best degrading bacterial isolates. Isolate No.37 the best bacterial isolate was able to degrade 63% of imidacloprid. was