Preferred Language
Articles
/
ijs-10572
Kolmogorov Turbulent Simulations of Photon Limited Images of Binary Stars

The autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 30 2019
Journal Name
Studia Universitatis BabeÈ™-bolyai Chemia
Scopus (2)
Scopus Clarivate Crossref
Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between method penalized quasi- likelihood and Marginal quasi-likelihood in estimating parameters of the multilevel binary model

Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of  the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Performance Evaluation of Scalar Multiplication in Elliptic Curve Cryptography Implementation using Different Multipliers Over Binary Field GF (2233)

This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.

The first approach attains a performance index

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Dec 28 2016
Journal Name
Environmental Technology
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Wed Nov 20 2024
Journal Name
Journal Of Baghdad College Of Dentistry
Validity of Hounsfield Units from computed tomographic images of mandibular bone in detection of osteoporosis

Background: The figure for the clinical application of computed tomography have been increased significantly in oral and maxillofacial field that supply the dentists with sufficient data enables them to play a main role in screening osteoporosis, therefore Hounsfield units of mandibular computed tomography view used as a main indicator to predict general skeleton osteoporosis and fracture risk factor. Material and Methods: Thirty subjects (7 males &23 females) with a mean age of (60.1) years underwent computed tomographic scanning for different diagnostic assessment in head and neck region. The mandibular bone quality of them were determined through Hounsfield units of CT scan images and were correlated with the bone mineral density v

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Scopus Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
Crossref
View Publication Preview PDF