On Goldie
In this paper, we introduce the concept of s.p-semisimple module. Let S be a semiradical property, we say that a module M is s.p - semisimple if for every submodule N of M, there exists a direct summand K of M such that K ≤ N and N / K has S. we prove that a module M is s.p - semisimple module if and only if for every submodule A of M, there exists a direct summand B of M such that A = B + C and C has S. Also, we prove that for a module M is s.p - semisimple if and only if for every submodule A of M, there exists an idempotent e ∊ End(M) such that e(M) ≤ A and (1- e)(A) has S.
Let be a ring with identity. Recall that a submodule of a left -module is called strongly essential if for any nonzero subset of , there is such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule of is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules and of that a module has the
... Show MoreThe main objective of this research is to study and to introduce a concept of strong fully stable Banach -algebra modules related to an ideal.. Some properties and characterizations of full stability are studied.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
The concept of St-Polyform modules, was introduced and studied by Ahmed in [1], where a module M is called St-polyform, if for every submodule N of M and for any homomorphism ð‘“:N M; kerð‘“ is St-closed submodule in N. The novelty of this paper is to dualize this class of modules, the authors call it CSt-polyform modules, and according to this dualizations, some results which appeared in [1] are dualized for example we prove that in the class of hollow modules, every CSt-polyform module is coquasi-Dedekind. In addition, several important properties of CSt-polyform module are established, and other characterization of CSt-polyform is given. Moreover, many relationships of CSt-polyform modules with other related concepts are
... Show MoreLet M be an R-module, where R is commutative ring with unity. In this paper we study the behavior of strongly hollow and quasi hollow submodule in the class of strongly comultiplication modules. Beside this we give the relationships between strongly hollow and quasi hollow submodules with V-coprime, coprime, bi-hollow submodules.
Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
A submodule Ϝ of an R-module Ε is called small in Ε if whenever , for some submodule W of Ε , implies . In this paper , we introduce the notion of Ζ-small submodule , where a proper submodule Ϝ of an R-module Ε is said to be Ζ-small in Ε if , such that , then , where is the second singular submodule of Ε . We give some properties of Ζ-small submodules . Moreover , by using this concept , we generalize the notions of hollow modules , supplement submodules, and supplemented modules into Ζ-hollow modules, Ζ-supplement submodules, and Ζ-supplemented modules. We study these concepts and provide some of their relations .
The main goal of this paper is to give a new generalizations for two important classes in the category of modules, namely the class of small submodules and the class of hollow modules. They are purely small submodules and purely hollow modules respectively. Various properties of these classes of modules are investigated. The relationship between purely small submodules and P-small submodules which is introduced by Hadi and Ibrahim, is studied. Moreover, another characterization of purely hollow modules is considered.