Iraq is one of the Arabian area countries, which considered from the drier areas
on the earth, though it has two main rivers that pass through(Tigris and Euphrates);
it suffers the same problem as them (drought), only the rivers' nearby regions make
use of their water for (domestic, agricultural, and industrial purposes(.
One of the usable solutions is to utilize the groundwater (especially in the desert
regions). Using the Remote Sensing and geographic information system is a rapid
and coast effective techniques, they provide information of large and inaccessible
area within short span for assessing, monitoring, and management of groundwater
resources. In this study, an adaptive algorithm based on Canny edge detector noise
reduction idea and directional filters scheme submitted for lineaments automatically
extraction from LandSat7 (Enhanced Thematic Mapper Plus) ETM+ band 7 data
considering the lineaments spatial and spectral characteristics, yet the algorithm
validation examined using ancillary data of the same interest (Iraq tectonic map and
90m SRTM DEM). The analysis process achieved using Arc GIS 9.3 to recognize
the potential groundwater renewal and/ or accumulative zones in the selected arid to
semi-arid area (AL-Dibdibba formation basin).
More than 95% of the industrial controllers in use today are PID or modified PID controllers. However, the PID is manually tuning to be responsive so that the Process Variable is rapidly and steady moved to track the set point with minimize overshoot and stable output. The paper presents generic teal-time PID controller architecture. The developed architecture is based on the adaption of each of the three controller parameters (PID) to be self- learning using individual least mean square algorithm (LMS). The adaptive PID is verified and compared with the classical PID. The rapid realization of the adaptive PID architecture allows the readily fabrication into a hardware version either ASIC or reconfigurable.
A multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors) and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR) filter may be opposed the fundamental requirements of fa
... Show MoreData-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
Abstract-Servo motors are important parts of industry automation due to their several advantages such as cost and energy efficiency, simple design, and flexibility. However, the position control of the servo motor is a difficult task because of different factors of external disturbances, nonlinearities, and uncertainties. To tackle these challenges, an adaptive integral sliding mode control (AISMC) is proposed, in which a novel bidirectional adaptive law is constructed to reduce the control chattering. The proposed control has three steps to be designed. Firstly, a full-order integral sliding manifold is designed to improve the servo motor position tracking performance, in which the reaching phase is eliminated to achieve the invariance of
... Show More