More than 95% of the industrial controllers in use today are PID or modified PID controllers. However, the PID is manually tuning to be responsive so that the Process Variable is rapidly and steady moved to track the set point with minimize overshoot and stable output. The paper presents generic teal-time PID controller architecture. The developed architecture is based on the adaption of each of the three controller parameters (PID) to be self- learning using individual least mean square algorithm (LMS). The adaptive PID is verified and compared with the classical PID. The rapid realization of the adaptive PID architecture allows the readily fabrication into a hardware version either ASIC or reconfigurable.
The aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys
... Show MoreThere is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreIn this paper, a self-tuning adaptive neural controller strategy for unknown nonlinear system is presented. The system considered is described by an unknown NARMA-L2 model and a feedforward neural network is used to learn the model with two stages. The first stage is learned off-line with two configuration serial-parallel model & parallel model to ensure that model output is equal to actual output of the system & to find the jacobain of the system. Which appears to be of critical importance parameter as it is used for the feedback controller and the second stage is learned on-line to modify the weights of the model in order to control the variable parameters that will occur to the system. A back propagation neural network is appl
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Reflections are ubiquitous effects in photos taken through transparent glass mediums, and represent a big problem in photography that impacts severely the performance of computer vision algorithms. Reflection removal is widely needed in daily lives with the prevalence of camera-equipped smart phones, and it is important, but it is a hard problem. This paper addresses the problem of reflection separation from two images taken from different viewpoints in front of a transparent glass medium, and proposes algorithm that exploits the natural image prior (gradient sparsity prior), and robust regression method to remove reflections. The proposed algorithm is tested on real world images, and the quantitative and visual quality comparisons were
... Show MoreIn this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreThis paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
The use of a communication network in the closed loop control systems has many advantages such as remotely controlling equipment, low cost, easy to maintenance, efficient information transmission, etc. However, the Networked Control System (NCS) has many drawbacks, such as network-induce end-to-end time delay and packet loss, which lead to significant degradation in controller performance and may result in instability. Aiming at solving performance degradation in NCS, this paper propose to take the advantages and strength of the conventional Proportional-Integral-Derivative (PID), Fuzzy Logic (FL), and Gain Scheduling (GS) fundamentals to design a Fuzzy-PID like-Gain Scheduling (F-PID-GS) control technique, which has been proved to be ef
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreCrow Search Algorithm (CSA) can be defined as one of the new swarm intelligence algorithms that has been developed lately, simulating the behavior of a crow in a storage place and the retrieval of the additional food when required. In the theory of the optimization, a crow represents a searcher, the surrounding environment represents the search space, and the random storage of food location represents a feasible solution. Amongst all the food locations, the one where the maximum amount of the food is stored is considered as the global optimum solution, and objective function represents the food amount. Through the simulation of crows’ intelligent behavior, the CSA attempts to find the optimum solutions to a variety of the proble
... Show More