In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P on lq , 0<q<1 is quasi
AY-chaotic then so is P where R+ with 1 and Pn for each n2.
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
The aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
In this research and by using the concept of , a new set of near set which is nano-Ἷ-semi-g-closed set was defined. Some properties and examples with illustrative table and an applied example were presented.
In thisipaper, we introduce the concepts of the modified tupledicoincidence points and the mixed finiteimonotone property. Also the existenceiand uniquenessiof modified tupled coincidenceipoint is discusses without continuous condition for mappings having imixed finite monotoneiproperty in generalizedimetric spaces.
‎ Since the first outbreak in Wuhan, China, in December 31, 2019, COVID-19 pandemic ‎has been spreading to many countries in the world. The ongoing COVID-19 pandemic has caused a ‎major global crisis, with 554,767 total confirmed cases, 484,570 total recovered cases, and ‎‎12,306 deaths in Iraq as of February 2, 2020. In the absence of any effective therapeutics or drugs ‎and with an unknown epidemiological life cycle, predictive mathematical models can aid in ‎the understanding of both control and management of coronavirus disease. Among the important ‎factors that helped the rapid spread of the ep
... Show MoreIn this paper the definition of fuzzy anti-normed linear spaces and its basic properties are used to prove some properties of a finite dimensional fuzzy anti-normed linear space.