In the present paper, the concepts of a quasi-metric space, quasi-Banach space
have been introduced. We prove some facts which are defined on these spaces and
define some polynomials on quasi-Banach spaces and studied their dynamics, such
as, quasi cyclic and quasi hypercyclic. We show the existence of quasi chaotic in the
sense of Devaney (quasi D-chaotic) polynomials on quasi Banach space of qsummable
sequences lq , 0<q<1 such polynomials P is defined by P((xi)i)=(p(xi+m))i
where p:CC, p(0) = 0. In general we also prove that P is quasi chaotic in the sense
of Auslander and Yorke (quasi AY-chaotic) if and only if 0 belong to the Julia set of
p, mN. And then we prove that if the above polynomial P on lq , 0<q<1 is quasi
AY-chaotic then so is P where R+ with 1 and Pn for each n2.
Since his first existence on earth, human had formed a connecting link for a regressive, kinetic and developed relationship that comes from a semi-complicated interaction between natural environment and constructed environment, and this resulted in the survival of human and his existence continuance. Constructed environment enabled human to survive the natural environment inconstancies and enemies as predators, also it helped him to feel safe, comfortable and to practice his everyday life activities...etc. This alternative interaction resulted in creating a civilized legacy for a group of landmarks that tell about the development of this relationship by elemental output that reached us either by documents and manuscripts or as an existed
... Show MoreThe aim of this paper is to study the convergence of an iteration scheme for multi-valued mappings which defined on a subset of a complete convex real modular. There are two main results, in the first result, we show that the convergence with respect to a multi-valued contraction mapping to a fixed point. And, in the second result, we deal with two different schemes for two multivalued mappings (one of them is a contraction and other has a fixed point) and then we show that the limit point of these two schemes is the same. Moreover, this limit will be the common fixed point the two mappings.
The phenotypic characteristics in the interior spaces are seeing the result of the ability of the designer in his handling of the vocabulary and the elements to deliver a specific meaning for the recipient , and is working to stir up the receiver and make it effective in the process of perception of space. So the theme of the role of phenotypic characteristics is of great significance in the process of analyzing spaces to reach the goal of the main idea , and show those qualities through relationships design in terms of shape, color and texture ... etc. , to reach also designs more beautiful , and creating an internal environment , creative and continuous with its external environment , Hence the importance of research in that it tries t
... Show MoreThe nuclear structure for the positive ( ) States and negative ( ) states of 36,40Ar nuclei have been studied via electromagnetic transitions within the framework of shell model. The shell model analysis has been performed for the electromagnetic properties, in particular, the excitation energies, occupancies numbers, the transition strengths B(CL) and the elastic and inelastic electron scattering longitudinal form factors. Different model spaces with different appropriate interactions have been considered for all selected states. The deduced results for the (CL) longitudinal form factors and other properties have been discussed and compared with the available experimental data. The inclusion of the effective
... Show MoreThe aim of this research is to prove the idea of maximum mX-N-open set, m-N-extremally disconnected with respect to t and provide some definitions by utilizing the idea of mX-N-open sets. Some properties of these sets are studied.
In this research, the effect of each of the concentrations ( Nd+3) was studied (N) the thickness of the thin disk (d) the number of times that the pumping beam passes through the effective medium of this laser (Mp) the reflectivity of the laser output mirror (R 2) The losses of the effective medium (L) and the pumping power used in achieving the reverse qualification (PP) on each of the pumping threshold capacities (Pp.th) and the output power of the laser (Pout) and the efficiency (ŋ) in Nd3+ thin-disk lasers (TDLs) pumping quasi-three-level With continuous operation (cw), at room temperature, and in the Gaussian mode (TEM00),
We found under these opera
... Show MoreAbstract\
In this research we built a mathematical model of the transportation problem for data of General Company for Grain Under the environment of variable demand ,and situations of incapableness to determining the supply required quantities as a result of economic and commercial reasons, also restrict flow of grain amounts was specified to a known level by the decision makers to ensure that the stock of reserves for emergency situations that face the company from decrease, or non-arrival of the amount of grain to silos , also it took the capabilities of the tanker into consideration and the grain have been restricted to avoid shortages and lack of processing capability, Function has been adopted
... Show MoreIn this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An -type of disease in prey is considered. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.
This paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.
The main objective of this work is to introduce and investigate fixed point (F. p) theorems for maps that satisfy contractive conditions in weak partial metric spaces (W.P.M.S), and give some new generalization of the fixed point theorems of Mathews and Heckmann. Our results extend, and unify a multitude of (F. p) theorems and generalize some results in (W.P.M.S). An example is given as an illustration of our results.