Preferred Language
Articles
/
ijs-10158
A Genetic Based Optimization Model for Extractive Multi-Document Text Summarization
...Show More Authors

Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datasets (d061j through d070f). Results clarify the effectiveness of the proposed model when compared with another state-of-the-art model.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Optimizing Blockchain Consensus: Incorporating Trust Value in the Practical Byzantine Fault Tolerance Algorithm with Boneh-Lynn-Shacham Aggregate Signature
...Show More Authors

The consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Direction Finding Using GHA Neural Networks
...Show More Authors

 This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).

 

 

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Improving the Direction of Arrival Estimation Using the Parasitic Subspace Generated by Active-Parasitic Antenna (APA) Arrays
...Show More Authors

The improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active ante

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Performance Assessment of Solar-Transformer-Consumption System Using Neural Network Approach
...Show More Authors

Solar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Solving Mixed Volterra - Fredholm Integral Equation (MVFIE) by Designing Neural Network
...Show More Authors

       In this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.

         

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 05 2021
Journal Name
Iraqi Journal Of Science
Heavy Metals Pollution Assessment of the Water in Al-Quds Power Plant in Baghdad
...Show More Authors

Sixteen water samples were collected from the operation units of the Al-Quds
power plant, north Baghdad city and the surrounding trocars, surface and
groundwater, and analyzed to assess the resulting pollution. The samples were
analyzed for heavy metals (As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, U and Zn) by
using inductively coupled plasma- mass spectrometry (ICP-MS). The results were
compared with local and international and standard limits. Heavy metals analysis of
the water samples shows that water of operation units and trocars have mean
concentrations of As, Cd, Cr, Cu, Mo, Pb, Sb, Se, U and Zn were within or lower
than the national and world limits, while Mn and Ni were higher than these limits.
Concentrat

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 02 2021
Journal Name
Journal Of The College Of Languages (jcl)
Some innovative word-formation processes in popular Internet texts in Russian and Arabic: Некоторые Инновационные словообразовательные процессы в популярных интернет-текстах в русском и арабском языках
...Show More Authors

       The present article discusses innovative word-formation processes in Internet texts, the emergence of new derivative words, new affixes, word-formation models, and word-formation methods. Using several neologisms as an example, the article shows both the possibilities of Internet word-making process and the possibilities of studying a newly established work through Internet communication. The words selected for analysis can be attributed to the keywords of the current time. (In particular, the words included in the list of "Words of 2019") there are number of words formed by the suffix method, which is the traditional method of the Russian word formation. A negation of these words is usually made thro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Selection of variables Affecting Red Blood Cell by Firefly Algorithm
...Show More Authors

Some maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.

View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More